
The Embedded I/O Company

TDRV002-S
Linux Device D

Multi-Channel Serial

Version 1.8.x

User Manu

Issue 1.8.3

November 20

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-82
river

Interface

al

17

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TDRV002-SW-82 - Linux Device Driver Page 2 of 26

TDRV002-SW-82

Linux Device Driver

Multi-Channel Serial Interface

Supported Modules:
TPMC37x
TPMC46x
TPMC47x
TXMC37x
TXMC46x
TCP46x
TCP47x

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2005-2017 by TEWS TECHNOLOGIES GmbH

TDRV002-SW-82 - Linux Device Driver Page 3 of 26

Issue Description Date

1.0.0 First Issue February 21, 2005

1.1.0 Built-In-Self-Test (BIST) added March 11, 2005

1.1.1 depmod for driver installation added October 13, 2005

1.2.0 New module support and transceiver programming IOCTL added.
ChangeLog.txt release history file added, file list modified.

July 26, 2006

1.2.1 New Address TEWS LLC November 7, 2006

1.3.0 New IOCTL command TDRV002_IOCT_SPEED added January 10, 2007

1.4.0 New IOCTL command TDRV002_IOCQ_GET_SPEED,

New IOCTL command TDRV002_IOCQ_GET_INFO,

example file added to file list

March 01, 2007

1.4.1 “TDRV002” device naming note added

Source file archive extraction command line added

June 20, 2007

1.4.2 File list changed, include path moved September 26, 2007

1.4.3 Address TEWS LLC removed, general Revision April 27, 2010

1.4.4 Chapter Installation modified January 24, 2011

1.4.5 New supported boards added to list August 1, 2011

1.5.0 New file list, diagnostic chapter modified December 20, 2011

1.6.0 New IOCTL command TDRV002_IOCT_SET_FIFOTRIG January 20, 2012

1.7.0 IOCTL command TDRV002_IOCQ_GET_INFO extended September 20, 2012

1.8.0 New board type TXMC375 added,

Description of allowed values changed in
TDRV002_IOCT_SET_FIFOTRIG,

Chapter “Special Baud Rates set via termios” removed,
Description ”Setting up Baud Rates” modified

March 26, 2013

1.8.1 New board type TPMC378 added,

Chapter “Known Problem” added

May 27, 2014

1.8.2 New board types TCP468, TXMC376, TXMC463, TXMC465 added,

Table of Supported Modules renewed

January 22, 2016

1.8.3 File-List modified November 24, 2017

TDRV002-SW-82 - Linux Device Driver Page 4 of 26

Table of Contents

1 INTRODUCTION... 5

2 INSTALLATION.. 7

Build and Install the Device Driver..82.1

Uninstall the Device Driver ..82.2

Install Device Driver into the running Kernel...82.3

Remove Device Driver from the running Kernel..92.4

Change Major Device Number ...92.5

3 DEVICE DRIVER PROGRAMMING ... 10

Setting up Baud Rates..103.1

ioctl ...113.2

3.2.1 TDRV002_IOCQ_BIST...13
3.2.2 TDRV002_IOCT_CONF_TRANS...16
3.2.3 TDRV002_IOCT_SPEED ...18
3.2.4 TDRV002_IOCQ_GET_SPEED ...19
3.2.5 TDRV002_IOCQ_GET_INFO...20
3.2.6 TDRV002_IOCT_SET_FIFOTRIG ...22

4 TDRV002CONFIG – COMMAND LINE TOOL ... 24

5 DIAGNOSTIC.. 25

6 APPENDIX.. 26

Known Problems...266.1

6.1.1 Open Device Multiple..26

TDRV002-SW-82 - Linux Device Driver Page 5 of 26

1 Introduction
The TDRV002-SW-82 Linux device driver is a full-duplex serial driver which allows the operation of a
supported serial PMC on Linux operating systems.

The TDRV002-SW-82 device driver is based on the standard Linux serial device driver and supports
all standard terminal functions (TERMIOS).

Supported features:

 Extended baud rates up to 5.5296 Mbaud.
 Depending on the board, 64 Byte or 256 Byte transmit and receive hardware FIFO per channel
 Programmable trigger level for transmit and receive FIFO.
 Hardware (RTS/CTS) and software flow control (XON/XOFF) directly controlled by the serial

controller. The advantage of this feature is that the transmission of characters will immediately
stop as soon as a complete character is transmitted and not when the transmit FIFO is empty
for handshake under software control. This will greatly improve flow control reliability.

 Direct support of different physical interfaces (e.g. RS-232, RS-422).
 Designed as Linux kernel module with dynamic loading.
 Supports shared IRQ’s.
 Built on new style PCI driver layout
 Creates a TTY device ttyTDRV002 and dial out device cuaTDRV002 (Kernel 2.4.x) with

dynamically allocated or fixed major device numbers.
 DEVFS and UDEV support for automatic device node creation

The TDRV002-SW-82 device driver supports the modules listed below:

M
o

d
u

le

S
e
ri

a
l

In
te

rf
a
c
e

s

P
ro

g
ra

m
m

a
b

le
In

te
rf

a
c
e

s

F
IF

O
-S

iz
e

(B
y
te

s
)

Is
o

la
te

d

F
o

rm
F

a
c
to

r

C
o

n
d

u
c
ti

o
n

C
o

o
le

d

TPMC371 8 64 PMC ●

TPMC372 4 64 PMC ●

TPMC375 8 ● 64 PMC ●

TPMC376 4 ● 64 PMC ●

TPMC377 4 ● 64 ● PMC ●

TPMC378 8 64 ● PMC ●

TPMC460 16 64 PMC

TPMC461 8 64 PMC

TPMC462 4 64 PMC

TPMC463 4 64 PMC

TPMC465 8 ● 64 PMC

TPMC466 4 ● 64 PMC

TPMC467 4 ● 64 PMC

TPMC470 4 ● 64 ● PMC

TXMC375 8 ● 256 XMC ●

TDRV002-SW-82 - Linux Device Driver Page 6 of 26

M
o

d
u

le

S
e
ri

a
l

In
te

rf
a
c
e

s

P
ro

g
ra

m
m

a
b

le
In

te
rf

a
c
e

s

F
IF

O
-S

iz
e

(B
y
te

s
)

Is
o

la
te

d

F
o

rm
F

a
c
to

r

C
o

n
d

u
c
ti

o
n

C
o

o
le

d

TXMC376 4 ● 256 XMC ●

TXMC463 4 256 XMC

TXMC465 8 ● 256 XMC

TCP460 16 64 cPCI

TCP461 8 64 cPCI

TCP462 4 64 cPCI

TCP463 4 64 cPCI

TCP465 8 ● 64 cPCI

TCP466 4 ● 64 cPCI

TCP467 4 ● 64 cPCI

TCP468 4 64 cPCI

TCP469 8 ● 64 ● cPCI

TCP470 4 ● 64 ● cPCI

In this document all supported modules and devices will be called TDRV002. Specials for
certain devices will be advised.

To get more information about the features and use of the supported devices it is recommended to
read the manuals listed below.

Corresponding Modules Hardware User Manual

Exar XR17D15x PCI UART or Exar XR17D35x PCIexpress UART User Manual

TDRV002-SW-82 - Linux Device Driver Page 7 of 26

2 Installation
The directory TDRV002-SW-82 on the distribution media contains the following files:

TDRV002-SW-82-1.8.3.pdf This manual in PDF format
TDRV002-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
Release.txt Release information
ChangeLog.txt Release history

The GZIP compressed archive TDRV002-SW-82-SRC.tar.gz contains the following files and
directories:

hal/ Hardware abstraction layer driver needed for all kernel versions
hal/Makefile HAL driver makefile
hal/tdrv002hal.c HAL driver source file
hal/tdrv002haldef.h HAL driver private header file
serial/ UART driver directory (for Kernels 2.6.x and newer)
serial/Makefile Serial driver makefile
serial/tdrv002serial.c Serial driver source file
serial /tdrv002serialdef.h Serial driver private header file
serial/2.4.x Kernel 2.4.x sources directory
serial/2.4.x/Makefile Serial driver makefile
serial/2.4.x/tdrv002serial.c Serial driver source file
serial/2.4.x/tdrv002serialdef.h Serial driver private header file
serial/makenode Shell script to create devices nodes without a device FS
serial/makenodeFM24 Same as makenode with additional support for CUA devices
include/tpmodule.c Driver independent library
include/tpmodule.h Driver independent library header file
include/config.h Driver independent library header file
include/tpxxxhwdep.c HAL low level WINNT style hardware access functions source file
include/tpxxxhwdep.h Access functions header file
example/Makefile Example application makefile
example/tdrv002example.c Send and receive example application
example/tdrv002setspeed.c Speed configuration example application
example/tdrv002bist.c Example for using Built-In-Self-Test
example/tdrv002config.c Command-Line Tool for transceiver programming
example/tdrv002readinfo.c Example displays hardware information of a channel
tdrv002.h Driver header file
tdrv002user.h User application header file
Makefile Top-level Makefile
COPYING Copy of the GNU Public License (GPL)

In order to perform an installation, extract all files of the archive TDRV002-SW-82-SRC.tar.gz to the
desired target directory. (Note: to extract the archive file use # tar –xvzf TDRV002-SW-82-SRC.tar.gz)

 Login as root and change to the target directory

 Copy tdrv002user.h to /usr/include

TDRV002-SW-82 - Linux Device Driver Page 8 of 26

Build and Install the Device Driver2.1

 Login as root

 Change to the tdrv002 target directory

 To create and install the HAL driver and SERIAL driver in the module directory
/lib/modules/<version>/misc enter:

make install

 To update the device driver’s module dependencies, enter:

depmod -aq

Uninstall the Device Driver2.2

 Login as root

 Change to the tdrv002 target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

Install Device Driver into the running Kernel2.3

 To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tdrv002serialdrv

 After the first build or if you are using dynamic major device allocation it’s necessary to create
new device nodes on the file system. Please execute the script file makenode, which resides in
serial/ directory, to do this. If your kernel has enabled the device file system (devfs, udev, ...)
then skip running the makenode script. Instead of creating device nodes from the script the
driver itself takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each compatible channel found. The first
channel of the first PMC module can be accessed with device node /dev/ttySTDRV002_0, the second
channel with device node /dev/ttySTDRV002_1 and so on. The assignment of device nodes to
physical PMC modules depends on the search order of the PCI bus driver.

TDRV002-SW-82 - Linux Device Driver Page 9 of 26

Remove Device Driver from the running Kernel2.4

 To remove the device driver from the running kernel login as root and execute the following
command:

modprobe –r tdrv002serialdrv

If your kernel has enabled a device file system (devfs, udev, ...), all /dev/ttySTDRV002_* nodes will be
automatically removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tdrv002serialdrv: Device or resource busy” and the driver will still remain in the
system until you close all opened files and execute modprobe –r again.

Change Major Device Number2.5

This paragraph is only for Linux kernels without a device file system (devfs, udev, ...) installed.

The released TDRV002 driver uses dynamic allocation of major device numbers. If this isn’t suitable
for the application it’s possible to define a major number separately for the TTY and CUA driver.

To change the major number edit the file tdrv002serial.c, change the following symbols to appropriate
values and enter make install to create a new driver.

TDRV002_TTY_MAJOR Defines the value for the terminal device. Valid
numbers are in range between 0 and 255. A
value of 0 means dynamic number allocation.

TDRV002_CUA_MAJOR Defines the value for the dial out device. Valid
numbers are in range between 0 and 255. A
value of 0 means dynamic number allocation.

Example:

#define TDRV002_TTY_MAJOR 122

#define TDRV002_CUA_MAJOR 123

Be sure that the desired major number isn’t used by other drivers. Please check /proc/devices
to see which numbers are free.

Keep in mind that’s necessary to create new device nodes if the major number for the TDRV002
driver has changed and the makenode script isn’t used.

TDRV002-SW-82 - Linux Device Driver Page 10 of 26

3 Device Driver Programming
The TDRV002-SW-82 driver loosely bases on the standard Linux terminal driver. Due to this way of
implementation the driver interface and functionality is compatible to the standard Linux terminal
driver.

Please refer to the TERMIOS man page and driver programming related man pages for more
information about serial driver programming.

Setting up Baud Rates3.1

The driver allows setting all baud rates supported by the channel. Not only standard baud rates are
supported, also special baud rates are supported. The driver will always try to set the best matching
baud rate.

There are two possibilities setting up baud rates:

The first is used to setup predefined baud rates, this is the standard way by using the termios structure
(e.g. using ssty).

The second way allows the selection of all baud rates the module can support. This way uses the ioctl
function TDRV002_IOCT_SPEED (please refer to the description of the ioctl function).

TDRV002-SW-82 - Linux Device Driver Page 11 of 26

ioctl3.2

NAME

ioctl() device control functions

SYNOPSIS

#include <sys/ioctl.h>
#include <tdrv002.h>
#include <tdrv002user.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation. The argument request specifies the control
code for the operation. The optional argument argp depends on the selected request and is described
for each request in detail later in this chapter.

The following ioctl codes are defined in tdrv002user.h:

Value Meaning

TDRV002_IOCQ_BIST Start Built-In-Self-Test

TDRV002_IOCT_CONF_TRANS Configure transceiver (physical interface)

TDRV002_IOCT_SPEED Setup user defined baud rates

TDRV002_IOCQ_GET_SPEED Returns the current configured baud rate

TDRV002_IOCQ_GET_INFO Reads out hardware information of a channel

TDRV002_IOCT_SET_FIFOTRIG Configure FIFO trigger levels

See below for more detailed information on each control code.

To use these TDRV002 specific control codes the header file tdrv002user.h must be included in
the application.

RETURNS

On success, zero is returned. In case of an error, a value of –1 is returned. The global variable errno
contains the detailed error code.

TDRV002-SW-82 - Linux Device Driver Page 12 of 26

ERRORS

Error Code Description

EINVAL Invalid argument. This error code is returned if the requested ioctl function is
unknown. Please check the argument request.

Other function dependent error codes will be described for each ioctl code separately. Note, the
TDRV002 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TDRV002-SW-82 - Linux Device Driver Page 13 of 26

3.2.1 TDRV002_IOCQ_BIST

NAME

TDRV002_IOCQ_BIST – Start Built-In-Self-Test

DESCRIPTION

The TDRV002 driver (version 1.1.0 and higher) supports a special IOCTL function for testing module
hardware and for system diagnostic. The optional argument can be omitted for this ioctl function.

The functionality is called Built-In-Self-Test or BIST. With BIST you can test each channel of all your
modules separately. There are three different test classes. First is a line test, second an interrupt test
and the last a data integrity test. All tests run with local channel loopback enabled, so you don’t need
an external cable connection. The Fig. 3-1 describes the loop back configuration of an 8 channel
UART, so all line arrays are index with [7:0]. For the two and four channel UARTs, the line arrays
should be indexed with [1:0] or [3:0].

Fig. 3-1

TDRV002-SW-82 - Linux Device Driver Page 14 of 26

The line test contains a test of all modem lines (RTS/CTS, DTR/DSR, OP1/RI, OP2/CD). Only the
static states for both electrical levels are tested on each sender – receiver line pair.

For testing interrupts the BIST transmits a test buffer with known data and size. All data should be
received on same channel during internal loopback. If not, there is an interrupt error. The buffer size is
1024 BYTE. The baud rate has to be set through the standard terminal IOCTL functions.

The last test verifies received data to assert data integrity.

EXAMPLE

#include <tdrv002user.h>

int result, tty1;

/* Start Built-In Selftest, */

result = ioctl(tty1, TDRV002_IOCQ_BIST, NULL);

if (result < 0) {

printf("ERRNO %d - %s\n", errno, strerror(errno));

}

else if (result > 0) {

printf("BIST detected a line error!\n");

if (result & TDRV002_ERTSCTS)

printf("RTS/CTS line broken!\n");

if (result & TDRV002_EDTRDSR)

printf("DTR/DSR line broken!\n");

if (result & TDRV002_ERI)

printf("OP1/RI line broken!\n");

if (result & TDRV002_ECD)

printf("OP2/DCD line broken!\n");

if (result & TDRV002_EDATA)

printf("Data integrity test failed!\n");

}

else {

printf("INFO: Port successfully tested.\n");

}

TDRV002-SW-82 - Linux Device Driver Page 15 of 26

RETURNS

If return value is > 0 one of three tests failed. Use the following flags to get a detailed error description.

Return Code Description

TDRV002_ERTSCTS If set RTS/CTS line broken.

TDRV002_EDTRDSR If set DTR/DSR line broken.

TDRV002_ERI If set OP1/RI line broken.

TDRV002_ECD If set OP2/CD line broken.

TDRV002_EDATA Data integrity test failed. No correct transmission
possible.

ERRORS

Error Code Description

ETIME A timeout occurred during wait, interrupts do not work
correctly.

EAGAIN Your task should never been blocked. Change it to use
the Built-In-Self-Test.

ERESTARTSYS Interrupted by external signal.

TDRV002-SW-82 - Linux Device Driver Page 16 of 26

3.2.2 TDRV002_IOCT_CONF_TRANS

NAME

TDRV002_IOCT_CONF_TRANS – Configure transceiver

DESCRIPTION

This ioctl function configures the transceiver circuit of all TDRV002 modules with a programmable
physical interface.

The configuration is passed by value by the parameter arg to the driver.

The flags below are available and should be ORed to build a configuration value:

Value Meaning

TDRV002_CFG_RS485_RS232 Set to enable RS485 interface, clear to enable
RS232 interface.

TDRV002_CFG_HDPLX Set to enable half-duplex interface, clear to enable
full-duplex interface.

TDRV002_CFG_RENA Set to enable “auto RS485 receiver enable” feature,
clear to disable it.

TDRV002_CFG_RTERM Set to enable receiver termination, clear to disable it.

TDRV002_CFG_TTERM Set to enable transmitter termination, clear to
disable it.

TDRV002_CFG_SLEWLIMIT Set to enable slew limit mode, clear to disable it.

TDRV002_CFG_SHDN Set to shutdown the whole transceiver circuit, clear
to enable the transceiver.

TDRV002_CFG_AUTO_RS485 Set to enable “UART Auto RS485 Mode”, clear to
disable it. (See UART XR17D15x Hardware User
Manual)

Beside the certain flags the tdrv002user.h header file offers a set of standard configurations that could
be used alternatively. The following predefined macros could be used:

Value Meaning

TDRV002_INTF_OFF Shutdown mode / disable interface

TDRV002_INTF_RS232 RS232

TDRV002_INTF_RS422 RS422 (Multidrop / Full Duplex)

TDRV002_INTF_RS485FDM RS485 Full Duplex (Master)

TDRV002_INTF_RS485FDS RS485 Full Duplex (Slave)

TDRV002_INTF_RS485HD RS485 Half Duplex

TDRV002-SW-82 - Linux Device Driver Page 17 of 26

EXAMPLE

#include <tdrv002user.h>

unsigned long config;

int result;

int tty1, tty2; /* device handles of modules with programmable
transceivers */

/* Setup channel as RS485 Full Duplex (Master)*/

config = TDRV002_CFG_RS485_RS232 |

TDRV002_CFG_RTERM |

TDRV002_CFG_TTERM;

result = ioctl(tty1, TDRV002_IOCT_CONF_TRANS, config);

if (result < 0) {

/* handle errors */

}

/* Setup channel as RS485 Full Duplex (Master) (alternative way) */

config = TDRV002_INTF_RS485FDM;

result = ioctl(tty1, TDRV002_IOCT_CONF_TRANS, config);

if (result < 0) {

/* handle errors */

}

/* Shutdown the physical interface of certain channel */

config = TDRV002_INTF_OFF;

result = ioctl(tty2, TDRV002_IOCT_CONF_TRANS, config);

if (result < 0) {

/* handle errors */

}

ERRORS

Error Code Description

ENODEV The selected device has no programmable physical
interface. See Hardware User Manual for detailed
information about programmable transceivers.

TDRV002-SW-82 - Linux Device Driver Page 18 of 26

3.2.3 TDRV002_IOCT_SPEED

NAME

TDRV002_IOCT_SPEED – Setup user defined baud rates

DESCRIPTION

This ioctl function sets up a user defined baud rate. This allows using the TDRV002 device with every
adjustable baud rate.

The new baud rate is passed by value by the parameter arg to the driver. The baud rate limits are
device and configuration dependent, so please refer to the suitable manual.

The function tries to set the baud rate in “X16-mode”, if the nearest configurable baud rate has
a difference greater than 3% to the chosen one, the driver will setup the baud rate in “X8-
mode” or in”X4-mode”, if supported by hardware.

If a user defined baud rate is set, standard tools (like stty) will return invalid information about
the selected baud rate.

EXAMPLE

#include <tdrv002user.h>

int result, tty1;

/* Setup 14400 Baud */

result = ioctl(tty1, TDRV002_IOCT_SPEED, 14400);

if (result < 0) {

/* handle errors */

}

TDRV002-SW-82 - Linux Device Driver Page 19 of 26

3.2.4 TDRV002_IOCQ_GET_SPEED

NAME

TDRV002_IOCQ_GET_SPEED – Read the current configured baud rate

DESCRIPTION

This ioctl function returns the currently configured baud rate of the specified channel. This allows
checking if a baud rate can be configured correctly or if it is substituted by the nearest configurable
baud rate.

The current baud rate is returned in the integer argument the parameter arg points on.

EXAMPLE

#include <tdrv002user.h>

int result, tty1, baudrate;

result = ioctl(tty1, TDRV002_IOCQ_GET_SPEED, &baudrate);

if (result < 0) {

/* handle errors */

}

else {

printf(“Current Baudrate: %d\n”, baudrate);

}

TDRV002-SW-82 - Linux Device Driver Page 20 of 26

3.2.5 TDRV002_IOCQ_GET_INFO

NAME

TDRV002_IOCQ_GET_INFO – Reads information about the position and type of a channel

DESCRIPTION

This ioctl function reads the module position, module ID and the local channel number of a specified
channel. This information may allow an easier module identification and configuration checking in the
system.

A pointer to the information buffer (TDRV002_GET_INFO_STRUCT) is passed by the parameter arg
to the driver

typedef struct

{

int pciBusNo;

int pciParentBusNo;

int pciDeviceNo;

int localChannelNo;

int deviceId;

int subSystemId;

char typeStr[20];

int intfProgrammable;

unsigned char intfConfig;

} TDRV002_GET_INFO_STRUCT;

pciBusNo

Returns the PCI bus number the UART is mounted. Some TDRV002 supported modules have their
own PCI bridge in this case the value is the number of the local PCI bus on the module.

pciParentBusNo

Returns the PCI bus number of the parent PCI bus. This value may be interesting if a module type
with an own PCI bridge is used. If there is no parent PCI bus, the value will be -1.

pciDeviceNo

Returns the PCI device number of the UART controller. This specifies a fix place on the PCI bus
and may be used to identify a special module. The value returns the PCI device number of the
UART not that one of the TDRV002 supported module.

localChannelNo

Returns the local channel number of the specified device. The first channel on a module starts
with 0, the second is 1 and so on.

deviceId

Returns the PCI device ID, this identifies the model type.

TDRV002-SW-82 - Linux Device Driver Page 21 of 26

subSystemId

Returns the PCI Subsystem ID, this identifies the model variant.

typeStr

Returns a string with the product name, e.g. TPMC461-12 or TCP462-10

intfProgrammable

Returns TRUE (1) if the specific channel offers a programmable interface.

intfConfig

Returns the current transceiver interface configuration. For a description of this value refer to
function TDRV002_IOCT_CONF_TRANS.

EXAMPLE

#include <tdrv002user.h>

int result, tty1;

TDRV002_GET_INFO_STRUCT infoBuf;

/* Display channel position and Moduletype */

result = ioctl(tty1, TDRV002_IOCQ_GET_INFO, &infoBuf);

if (result < 0) {

printf(“Device: %d/%d/%d: %s\n”,

infoBuf.pciBusNo,

infoBuf.pciDeviceNo,

infoBuf.localChannelNo,

infoBuf.typeStr);

if (infoBuf.intfProgrammable)

{

printf(“Interface configuration : %02Xh\n”, infoBuf.intfConfig);

} else {

printf(“Interface is not configurable.\n”);

}

}

TDRV002-SW-82 - Linux Device Driver Page 22 of 26

3.2.6 TDRV002_IOCT_SET_FIFOTRIG

NAME

TDRV002_IOCT_SET_FIFOTRIG – Configure FIFO trigger levels

DESCRIPTION

This ioctl function configures the FIFO trigger levels for hardware receive and transmit FIFO. This
allows optimizing interrupt load or data loss protection.

The new FIFO trigger level must be specified in structure (TDRV002_SET_FIFO_STRUCT). The
pointer of the structure must be passed by the parameter arg to the driver.

typedef struct

{

unsigned int txFifoTrig;

unsigned int rxFifoTrig;

} TDRV002_SET_FIFO_STRUCT;

txFifoTrig

This value specifies the new FIFO trigger level, which specifies the number of characters left in
the transmit FIFO when the controller will generate an interrupt announcing that there is space
in the transmit FIFO to be filled with more data ready to be transmitted. Allowed values are
0...64 (for all TPMC and TCP boards) and 0…255 (for TXMC boards), but 0 specifies to use the
default value of 16.

Increasing the value will increase interrupt load but the possibility of gaps in data transmission
(while data is ready to send) will be decreased. Decreasing the value will decrease interrupt
load but increase the risk of transmission gaps.

rxFifoTrig

This value specifies the new FIFO trigger level, which specifies the number of characters in the
receive FIFO when the controller will generate an interrupt announcing that data should be
read. Allowed values are 0...64 (for all TPMC and TCP boards) and 0…255 (for TXMC boards),
but 0 specifies to use the default value of 48.

Increasing this value will decrease interrupt load, but will increase the risk of data loss, if
hardware handshake is not used. Decreasing the value will increase interrupt load, but
decrease the risk of data loss.

TDRV002-SW-82 - Linux Device Driver Page 23 of 26

EXAMPLE

#include <tdrv002user.h>

int result, tty1;

TDRV002_SET_FIFO_STRUCT fifoBuf;

/* Rx-FIFO-trigger: 32 */

/* Tx-FIFO-trigger: 40 */

fifoBuf.rxFifoTrig = 32;

fifoBuf.txFifoTrig = 40;

result = ioctl(tty1, TDRV002_IOCT_SET_FIFOTRIG, &fifoBuf);

if (result < 0) {

/* handle errors */

}

TDRV002-SW-82 - Linux Device Driver Page 24 of 26

4 tdrv002config – Command Line Tool
To setup the physical interface of a certain channel you can use example/tdrv002config for
programming of the transceiver circuit.

format : tdrv002config <minor1> <options>

example: tdrv002config 0 crs485 crterm

configures /dev/ttySTDRV002_0 to RS422 full duplex master

List of all options:

crs485

chdplx

crena

crterm

ctterm

cslewlimit

cshdn

cautors485

For detailed configuration options information see TDRV002_IOCT_CONF_TRANS ioctl function
description.

TDRV002-SW-82 - Linux Device Driver Page 25 of 26

5 Diagnostic
If the TDRV002 driver does not work properly it is helpful to get some status information from the
driver respective kernel.

The Linux /proc file system provides information about kernel, resources, driver, devices and so on.
The following screen dumps display information of a correct running TDRV002 driver (see also the
proc man pages).

(The example output below has been created with kernel 3.1.5-2.fc16.x86_64 and an installed
TPMC461.)

cat /proc/tty/driver/tdrv002serial

serinfo:1.0 driver revision:

0: uart:XR17D15X mmio:0xFEB9F000 irq:16 tx:8192 rx:8192

1: uart:XR17D15X mmio:0xFEB9F200 irq:16 tx:1024 rx:1024 CTS

2: uart:XR17D15X mmio:0xFEB9F400 irq:16 tx:1024 rx:1024 CTS

3: uart:XR17D15X mmio:0xFEB9F600 irq:16 tx:1024 rx:1024

4: uart:XR17D15X mmio:0xFEB9F800 irq:16 tx:1024 rx:1024

5: uart:XR17D15X mmio:0xFEB9FA00 irq:16 tx:1024 rx:1024

6: uart:XR17D15X mmio:0xFEB9FC00 irq:16 tx:1024 rx:1024

7: uart:XR17D15X mmio:0xFEB9FE00 irq:16 tx:1024 rx:1024

…

/proc/tty/drivers

/dev/tty /dev/tty 5 0 system:/dev/tty

/dev/console /dev/console 5 1 system:console

/dev/ptmx /dev/ptmx 5 2 system

/dev/vc/0 /dev/vc/0 4 0 system:vtmaster

tdrv002serial /dev/ttySTDRV002_ 250 0-127 serial

usbserial /dev/ttyUSB 188 0-253 serial

serial /dev/ttyS 4 64-95 serial

pty_slave /dev/pts 136 0-1048575 pty:slave

pty_master /dev/ptm 128 0-1048575 pty:master

unknown /dev/tty 4 1-63 console

lspci –v

…

04:01.0 Serial controller: TEWS Technologies GmbH Device 01cd (rev 02)
(prog-if 02 [16550])

Subsystem: TEWS Technologies GmbH Device 000c

Flags: fast devsel, IRQ 16

Memory at feb9f000 (32-bit, non-prefetchable) [size=4K]

Kernel driver in use: TEWS TECHNOLOGIES - TDRV002HAL Driver

Kernel modules: tdrv002haldrv

…

TDRV002-SW-82 - Linux Device Driver Page 26 of 26

6 Appendix

Known Problems6.1

6.1.1 Open Device Multiple

A TDRV002 tty device should not be opened by multiple processes at the same time. The processes
may affect each other and there may be problems accessing the device.

	1	Introduction
	2	Installation
	2.1	Build and Install the Device Driver
	2.2	Uninstall the Device Driver
	2.3	Install Device Driver into the running Kernel
	2.4	Remove Device Driver from the running Kernel
	2.5	Change Major Device Number

	3	Device Driver Programming
	3.1	Setting up Baud Rates
	3.2	ioctl
	3.2.1	TDRV002_IOCQ_BIST
	3.2.2	TDRV002_IOCT_CONF_TRANS
	3.2.3	TDRV002_IOCT_SPEED
	3.2.4	TDRV002_IOCQ_GET_SPEED
	3.2.5	TDRV002_IOCQ_GET_INFO
	3.2.6	TDRV002_IOCT_SET_FIFOTRIG

	4	tdrv002config – Command Line Tool
	5	Diagnostic
	6	Appendix
	6.1	Known Problems
	6.1.1	Open Device Multiple

