
The Embedded I/O Company

TDRV002-SW-95
QNX Neutrino Device Driver

Multiple Channel Serial Interface

Version 1.3.x

User Manual

Issue 1.3.0

January 2020

TEWS TECHNOLOGIES GmbH

Am Bahnhof 7 25469 Halstenbek, Germany

Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19

e-mail: info@tews.com www.tews.com

TDRV002-SW-95 – QNX Neutrino Device Driver Page 2 of 21

TDRV002-SW-95

QNX Neutrino Device Driver

Multiple Channel Serial Interface

Supported Modules:
TPMC37x
TPMC46x
TPMC47x
TCP46x
TCP47x
TXMC37x
TXMC46x

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2005-2020 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue September 27, 2005

1.0.1 TPMC467/TCP467 support added, modified file list February 2, 2007

1.0.2 Modification for devc-devices and QNX6.3.x with SPx February 23, 2007

1.0.3 Description of installation corrected, “Avoiding Data Loss” added,
Address TEWS LLC removed

October 7, 2010

1.1.0 TPMC377, TPMC470, TCP469 and TCP470 support added May 4, 2011

1.2.0 New Files added to file list, TXMC375 support added

devctl-function TDRV002_DCMD_SET_TRANSC added

April 4, 2013

1.3.0 QNX 6.6, QNX 7 Support added (Driver Installation, Start)

Support for TPMC378, TCP468, TXMC376, TXMC 463, TXMC465
TXMC466 added

January 21, 2020

TDRV002-SW-95 – QNX Neutrino Device Driver Page 3 of 21

Table of Contents

1 INTRODUCTION... 4

2 INSTALLATION.. 6

Building Executables on Native Systems ..62.1

2.1.1 Build the Device Driver ...6
2.1.2 Build the Example Applications ..6
Building Executables with Momentics IDE (5.0) ..72.2

2.2.1 Build the Device Driver ...7
2.2.2 Build the Example Application ..7
2.2.3 Integrate the Device Driver Files to a QNX-Image ...7
Building Executables with Momentics IDE (7.0) ..82.3

2.3.1 Build the Device Driver ...8
2.3.2 Build the Example Applications ..8
2.3.3 Integrate the Device Driver Files to a QNX-Image ...9
Start the Driver Process ...102.4

Configuration File ...122.5

Avoiding Data Loss...142.6

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 15

open..153.1

close ...173.2

devctl..183.3

3.3.1 TDRV002_DCMD_SET_TRANSC ...20

TDRV002-SW-95 – QNX Neutrino Device Driver Page 4 of 21

1 Introduction
The TDRV002-SW-95 QNX Neutrino device driver is a full-duplex serial device driver which allows the
operation of TDRV002 serial devices on Intel x86 based QNX Neutrino operating systems.

The TDRV002-SW-95 device driver is based on a version of the standard QNX 8250 serial
communication manager. Due to this way of implementation the driver interface and function is
compatible to the standard QNX serial device manager.

All standard utility programs for configuration (e.g. stty) and maintaining terminal interfaces can be
used in the same manner.

Additional supported features:

 Receive and transmit FIFO trigger levels are configurable during driver start up
 Configuration of programmable interface. (If hardware supports programmable interface)

The TDRV002-SW-95 device driver supports the modules listed below:

M
o

d
u

le

S
e
ri

a
l

In
te

rf
a
c
e

s

P
ro

g
ra

m
m

a
b

le
In

te
rf

a
c
e

s

F
IF

O
-S

iz
e

(B
y
te

s
)

Is
o

la
te

d

F
o

rm
F

a
c
to

r

C
o

n
d

u
c
ti

o
n

C
o

o
le

d

TPMC371 8 64 PMC ●

TPMC372 4 64 PMC ●

TPMC375 8 ● 64 PMC ●

TPMC376 4 ● 64 PMC ●

TPMC377 4 ● 64 ● PMC ●

TPMC378 8 64 ● PMC ●

TPMC460 16 64 PMC

TPMC461 8 64 PMC

TPMC462 4 64 PMC

TPMC463 4 64 PMC

TPMC465 8 ● 64 PMC

TPMC466 4 ● 64 PMC

TPMC467 4 ● 64 PMC

TPMC470 4 ● 64 ● PMC

TCP460 16 64 cPCI

TCP461 8 64 cPCI

TCP462 4 64 cPCI

TCP463 4 64 cPCI

TCP465 8 ● 64 cPCI

TCP466 4 ● 64 cPCI

TDRV002-SW-95 – QNX Neutrino Device Driver Page 5 of 21

M
o

d
u

le

S
e
ri

a
l

In
te

rf
a
c
e

s

P
ro

g
ra

m
m

a
b

le
In

te
rf

a
c
e

s

F
IF

O
-S

iz
e

(B
y
te

s
)

Is
o

la
te

d

F
o

rm
F

a
c
to

r

C
o

n
d

u
c
ti

o
n

C
o

o
le

d

TCP467 4 ● 64 cPCI

TCP468 4 64 cPCI

TCP469 8 ● 64 ● cPCI

TCP470 4 ● 64 ● cPCI

TXMC375 8 ● 256 XMC ●

TXMC376 4 ● 256 XMC ●

TXMC463 4 256 XMC

TXMC465 8 ● 256 XMC

TXMC466 4 ● 256 XMC

In this document all supported modules and devices will be called TDRV002. Specials for
certain devices will be advised.

TDRV002-SW-95 – QNX Neutrino Device Driver Page 6 of 21

2 Installation
The directory TDRV002-SW-95 on the distribution media contains the following files:

TDRV002-SW-95-1.3.0.pdf This manual in PDF format
Release.txt Release information
ChangeLog.txt Release history
TDRV002-SW-95-SRC.tar.gz Driver source archive for QNX versions up to 6.5
TDRV002-SW-95-QNX66.zip Driver source archive for QNX6.6
TDRV002-SW-95-QNX7.zip Driver source archive for QNX7

Building Executables on Native Systems2.1

In order to perform an installation on a native system, extract all files of the archive TDRV002-SW-95-
SRC.tar.gz to the /usr/src directory. The command ‘tar -xzvf TDRV002-SW-95-SRC.tar.gz’ will extract
the files into the local directory. After that the necessary directory structure for the automatic build and
the source files are available underneath the new directory called tdrv002.

It is absolute important to create the tdrv002 project directory in the /usr/src directory,
otherwise the automatic build with make will fail.

For building the device driver it is necessary that the QNX serial DDK is installed.
(Installer: “/QNX Realtime Platform/Software Development/Device Driver Kits/
Character (Serial) DDK targeting x86”).

For Serial DDKs not using the pm library, please use common.mk-nopm instead of common.mk build
file. In detail, for QNX system releases before 6.3.0 copy common.mk-nopm to common.mk and start
the build process.

For Serial DDKs not using the ps library, please use common.mk-nops instead of common.mk build
file. In detail, for QNX system releases 6.3.x without a Service Pack copy common.mk-nops to
common.mk and start the build process.

2.1.1 Build the Device Driver

- Change to the /usr/src/tdrv002/driver directory

- Execute the Makefile

make install

After successful completion the driver binary will be installed in the /bin directory.

2.1.2 Build the Example Applications

- Change to the example directory (e.g. /usr/src/tdrv002/example)

- Execute the Makefile:

make install

After successful completion the example binary (e.g. tdrv002exa) will be installed in the /bin directory.

TDRV002-SW-95 – QNX Neutrino Device Driver Page 7 of 21

Building Executables with Momentics IDE (5.0)2.2

This chapter gives just a simple description how to build the drivers with the Momentics IDE (5.0). For
more detailed information, please refer to the appropriate documentation.

Extract the content of the TDRV002-SW-95-QNX66.zip archive from the distribution media to a
desired working directory.

After that the necessary directory structure for the automatic build and the source files are available
beneath the new directory called tdrv002.

2.2.1 Build the Device Driver

Create a new project (“Makefile Project with Existing Code”) in your workspace:
- Select a “Project Name” (e.g. TDRV002-driver)
- Select the path “tdrv002\driver” in the working directory as “Existing Code Location”
- Select the “Toolchain for Indexer Settings” (e.g. “QNX Multi-toolchain”)

Now the device driver can be built by “Building the Project”.

After successful completion the IDE shows a “Binaries”-path containing the built binary of tdrv002
device driver. (e.g. “devc-tdrv002 – [x86/le]”)

2.2.2 Build the Example Application

Create a new project (“Makefile Project with Existing Code”) in your workspace:
- Select a “Project Name” (e.g. TDRV002-example)
- Select the path “tdrv002\example” in the working directory as “Existing Code Location”
- Select the “Toolchain for Indexer Settings” (e.g. “QNX Multi-toolchain”)
- If necessary, extend the include path, add a link to tdrv002.h

or copy tdrv002.h into the example path

Now the example can be built by “Building the Project”.

After successful completion the IDE shows a “Binaries”-path containing the built binary of tdrv002
example application. (e.g. “tdrv002exa – [x86/le]”)

2.2.3 Integrate the Device Driver Files to a QNX-Image

To add the device driver file and the example application file to a QNX-Image, just a few steps are
necessary.

Copy the desired binary files of the device driver and example project into “sbin” beneath the “install”-
path of the target project using the Momentics-IDE.

Add the filenames of the added files into the build-file (e.g. “x86-generic.build”) in “images”. For
example the filenames (e.g. tdrv002, tdrv002exa) can be inserted behind the serial driver names
(insert each filename in a separate line).

After a rebuild of the QNX-Image, the driver files will be available on the disk and can be used after
booting.

TDRV002-SW-95 – QNX Neutrino Device Driver Page 8 of 21

Building Executables with Momentics IDE (7.0)2.3

This chapter gives just a simple description how to build the drivers with the Momentics IDE (7.0). For
more detailed information, please refer to the appropriate documentation.

Extract the content of the TDRV002-SW-95-QNX7.zip archive from the distribution media to a desired
working directory.

If necessary an additional path below of nto-path is needed for the desired target architecture.
Therefore simply copy an existing path and rename it corresponding to the target architecture (e.g.
“x86_64”).

After that the necessary directory structure for the automatic build and the source files are available
beneath the new directory called tdrv002.

2.3.1 Build the Device Driver

Create a new project (“Makefile Project with Existing Code”) in your workspace:
- Select a “Project Name” (e.g. TDRV002-driver)
- Select the path “tdrv002\driver” in the working directory as “Existing Code Location”
- Select the “Toolchain for Indexer Settings” (e.g. “QNX Multi-toolchain”)

Now we have to specify the name of the driver executable and additional libraries needed for the
driver. Open the projects properties (Alt+Enter), select C/C++ BuildEnvironment and add the
following environment variables and values to the necessary configurations:

- NAME = devc-tdrv002
- LIBS = pci io-char

Now the device driver can be built by “Building the Project”.

After successful completion the IDE shows a “Binaries”-path containing the built binaries of
devc-tdrv002 device driver of the enabled configurations (e.g. “devc-tdrv002 – [x86/le]” and
“devc-tdrv002 – [x86_64/le]”).

2.3.2 Build the Example Applications

Create a new project (“Makefile Project with Existing Code”) in your workspace:
- Select a “Project Name” (e.g. TDRV002-example)
- Select the path “tdrv002\example” in the working directory as “Existing Code Location”
- Select the “Toolchain for Indexer Settings” (e.g. “QNX Multi-toolchain”)
- If necessary, extend the include path, add a link to tdrv002.h

or copy tdrv002.h into the example path

Now we have to specify the name of the driver example executable. Open the projects properties
(Alt+Enter), select C/C++ BuildEnvironment and add the following environment variables and values
to the necessary configurations:

- NAME = tdrv002exa

Now the example can be built by “Building the Project”.

After successful completion the IDE shows a “Binaries”-path containing the built binaries of tdrv002
example application of the enabled configurations. (e.g. “tdrv002exa – [x86/le]” and “tdrv002exa –
[x86_64/le]”)

TDRV002-SW-95 – QNX Neutrino Device Driver Page 9 of 21

2.3.3 Integrate the Device Driver Files to a QNX-Image

To add the device driver file and the example application file to a QNX-Image, just a few steps are
necessary.

Copy the desired binary files of the device driver and example pr oject into “sbin” beneath the “install”-
path of the target project using the Momentics-IDE.

Add the filenames of the added files into the build-file (e.g. “x86_64-generic.build”) in “images”. For
example the filenames (e.g. devc-tdrv002, tdrv002exa) can be inserted behind the serial driver names
(insert each filename in a separate line).

After a rebuild of the QNX-Image, the driver files will be available on the disk and can be used after
booting.

TDRV002-SW-95 – QNX Neutrino Device Driver Page 10 of 21

Start the Driver Process2.4

To start the TDRV002 device driver respective the TDRV002 serial communications manager you
have to enter the process name with optional parameter from the command shell or in the startup
script.

devc-tdrv002 [options] &

OPTIONS

-b number Initial baud rate (default 9600).
-C size The size of the canonical buffer in bytes (default 1024).
-E Start in raw mode (the default). Software flow control is disabled by default.
-e Start in edit mode (default raw). Software flow control is enabled by default.
-F Disable hardware flow control (default to hardware flow control enabled).
-f Enable hardware flow control (default).
-I number The size of the interrupt input buffer in bytes (default 8192).
-O number The size of the interrupt output buffer in bytes (default 8192).
-S|s Disable / enable software flow control. The default depends on the mode: in

raw mode (-E, the default), its disabled; in edited mode (-e), it's enabled.
The order in which you specify the –E or –e, and –S or –s options matters:

Options Mode Software flow control

-e Edited Enabled

-S –e Edited Enabled

-e –S Edited Disabled

-E Raw Disabled

-s –E Raw Disabled

-E –s Raw Enabled

-u number Append number to the device name prefix (/dev/ser). The default is 3, which
mean the first TDRV002 device is /dev/ser3; additional devices are given
increasing numbers.

-v Print out debug information.
-L filename Specifies the filename of the configuration file which defines the setup for

FIFO trigger levels and programmable interfaces. A detailed description of
the configuration file can be found in the chapter Configuration File.

Most of the options above are standard options for serial communications manager. Please
refer also to related QNX documentation if necessary.

DESCRIPTION

The devc-tdrv002 manager is based on a version of the standard QNX devc-ser8250 serial
communications manager and can support any number of serial ports and TDRV002 modules.

TDRV002-SW-95 – QNX Neutrino Device Driver Page 11 of 21

The devc-tdrv002 manager searches the entire PCI-bus for TDRV002 devices and creates devices for
each serial channel. The first device created depends on the –u option. If the –u option is omitted the
first TDRV002 serial device is /dev/ser3. If a TPMC461 (8 channel) and a TPMC462 (4 channel) are
used, the devices /dev/ser3, /dev/ser4, …/dev/ser10 will be created for the TPMC461, /dev/ser11 …
/dev/ser14 will be created for the TPMC462.

The order of device creation of the devices on different modules depends on the PCI deviceID.
(Ascending order as described in chapter 1: TPMCxxx, TCPxxx, TXMCxxx)

Usually the device names /dev/ser1 and /dev/ser2 are assigned to the default PC serial ports,
therefore the TDRV002 devices can start with /dev/ser3 (default). If there are additional onboard serial
devices you have to start with a higher device number for the TDRV002 devices by defining an
appropriate number with the –u option (please check also the /dev directory).

A read request by default returns when at least 1 character is available. To increase efficiency, you
can control three parameters to control when a read is satisfied:

Time Return after a specified amount of time has elapsed (c_cc[VTIME]).
Min Return when this number of characters is in the input buffer (c_cc[VMIN]).
Char Return if the forwarding character is in the input buffer (c_cc[VEND]).

These parameters, and others, are set using library routines (see tcgetattr(), txsetattr(), readcond()
and TimerTimeout() in the Library Reference).

The following fields and flags are supported in the termios structure.

Field Supported fields and flags

c_cc All characters

c_iflag BRKINT ICRNL IGNBRK IXON

c_oflag OPOST

c_cflag CLOCAL CSIZE CSTOPB PARENB PARODD

c_lflag ECHO ECHOE ECHOK ECHONL ICANON IEXTEN ISIG NOFLSH

EXAMPLES

Start the device driver with default parameters (first created device is /dev/ser3, 9600 baud, see also
options above…):

devc-tdrv002 -F &

Start the device driver with default parameters and change baud rate to 38400

devc-tdrv002 -F –b 38400 &

Start the device driver with default parameters. The first created device is /dev/ser5.

devc-tdrv002 -F –u 5 &

Start the device driver with default parameters and configuration information from ./tdrv002config.txt.

devc-tdrv002 –L tdrv002config.txt &

TDRV002-SW-95 – QNX Neutrino Device Driver Page 12 of 21

Configuration File2.5

This chapter describes the syntax used in the configuration file.

Each line starts with a prefix, a ‘#’ specifies a line with comment and a ‘$’ specifies a line with
configuration data. Leading spaces will be ignored.

Behind the prefix ‘#’ all character will be ignored.

Behind the prefix ‘$’only valid characters are allowed. The line must have the following syntax:

$<mod>/<chan>-<P0><P1><P2><P3><P4><P5><P6><P7>-<Rx>/<Tx>

<mod>

Selects the module the configuration should be set to. 0 selects the 1
st

found module, 1 the 2
nd

and so on. A configuration that should be used for all modules can be specified with ‘*’.

<chan>

Selects the channel the configuration should be set to. 0 selects the 1
st

channel of the module, 1
the 2

nd
, and so on. A configuration that should be used for all channels of a specified module

can be specified with ‘*’.

<P0>

This value specifies the setting of the RS485/RS232# configuration. A ‘1’ sets this bit and a ‘0’
resets the bit. (This value is ignored for non-programmable interfaces)

<P1>

This value specifies the setting of the HDPLX configuration. A ‘1’ sets this bit and a ‘0’ resets
the bit. (This value is ignored for non-programmable interfaces)

<P2>

This value specifies the setting of the RENA configuration. A ‘1’ sets this bit and a ‘0’ resets the
bit. (This value is ignored for non-programmable interfaces)

<P3>

This value specifies the setting of the RTERM configuration. A ‘1’ sets this bit and a ‘0’ resets
the bit. (This value is ignored for non-programmable interfaces)

<P4>

This value specifies the setting of the TTERM configuration. A ‘1’ sets this bit and a ‘0’ resets
the bit. (This value is ignored for non-programmable interfaces)

<P5>

This value specifies the setting of the SLEW LIMIT configuration. A ‘1’ sets this bit and a ‘0’
resets the bit. (This value is ignored for non-programmable interfaces)

<P6>

This value specifies the setting of the SHDN configuration. A ‘1’ sets this bit and a ‘0’ resets the
bit. (This value is ignored for non-programmable interfaces)

TDRV002-SW-95 – QNX Neutrino Device Driver Page 13 of 21

<P7>

This value specifies the setting of the Auto RS485 Operation configuration. A ‘1’ sets this bit and
a ‘0’ resets the bit. (This value is ignored for non-programmable interfaces)

<Rx>

Specifies the receive FIFO trigger level. The value must be between 1 and 63 for TPMCxxx and
TCPxxx and between 1 and 255 for TXMCxxx. (56 is a value that fits into most applications and
systems)

<Tx>

Specifies the transmit FIFO trigger level. The value must be between 1 and 63 for TPMCxxx
and TCPxxx and between 1 and 255 for TXMCxxx. (8 is a value that fits into most applications
and systems)

The configuration entries will always be scanned from the beginning of the file and the 1
st

matching
configuration will be used. This allows the specification of general configurations and some special,
that will be used for specifies channels.

Values for configuration parameters <P0>...<P7> are described in detail in the modules
hardware user manual.

EXAMPLE

1) All channels shall get the same configuration:

Setup all channel for RS232 with trigger levels of 56 for Rx and 8 for Tx

$*/*-00000000-56/8

2) Setup the first module different to the other modules

Setup all channels of the 1st module for RS232, and all other channels for

RS422 (RS485/RTERM) with trigger levels of 56 for Rx and 8 for Tx

$0/*-00000000-56/8

$*/*-10010000-56/8

3) Like 2) but 4
th

channel of the 1
st

module should also be RS422 (R485/RTERM)

$0/3-10010000-56/8

$0/*-00000000-56/8

$*/*-10010000-56/8

TDRV002-SW-95 – QNX Neutrino Device Driver Page 14 of 21

Avoiding Data Loss2.6

If higher baud rates are used, or system load is high, it may be necessary to change the serial
configurations. First FIFO trigger levels can be modified and second the size of the SW-buffers can be
increased.

The receive trigger level specifies the number of characters that have to be stored in the FIFO before
an interrupt is generated. The remaining space in the FIFO specifies the time before a data overrun
will occur and data gets lost. Therefore changing the configuration may be necessary if there is a high
interrupt load on the system and the ISR may be delayed. The FIFO trigger level is defined in the
configuration file. (See 2.5 Configuration File)

Example 1:
Configuration: receive trigger level is set to 56, 115200-8N1
8 Characters space in FIFO when interrupt occurs (FIFO-size [64] – trigger level [56])
 time until the FIFO must be read is at least ~0.69 ms ((8 * 10Bit) / 115200Baud)

Example 2:
Configuration: receive trigger level is set to 16, 115200-8N1
48 Characters space in FIFO when interrupt occurs (FIFO-size [64] – trigger level [16])
 time until the FIFO must be read is at least ~4.16 ms ((48 * 10Bit) / 115200Baud)

The example shows calculations for FIFO with a depth of 64 characters, if UARTS with a FIFO
depth of 256 characters are used the calculation must be adapted with the corresponding FIFO
size.

Changing the FIFO trigger level also changes the interrupt load. Decreasing the Rx FIFO trigger
level will increase the number of interrupts!

The second modification, changing sizes of SW-buffers is useful, if the interrupts can be handled in
time, but there is still loss of data. The size of the SW-buffers can be specified when the driver is
started. (See 2.4 Start the Driver Process)

TDRV002-SW-95 – QNX Neutrino Device Driver Page 15 of 21

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system used for the special devctl
functions.

open3.1

NAME

open() - open a file descriptor

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *pathname, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the TDRV002 named by pathname.
The flags argument controls how the file is to be opened. TDRV002 devices must be opened
O_RDWR.

EXAMPLE

int fd;

fd = open(“/dev/ser3”, O_RDWR);

if (fd == -1)

{

/* Handle error */

}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TDRV002-SW-95 – QNX Neutrino Device Driver Page 16 of 21

ERRORS

Returns only Neutrino specific error codes, see Neutrino Library Reference.

SEE ALSO

Library Reference - open()

TDRV002-SW-95 – QNX Neutrino Device Driver Page 17 of 21

close3.2

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0)

{

/* handle close error conditions */

}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

Returns only Neutrino specific error code, see Neutrino Library Reference.

SEE ALSO

Library Reference - close()

TDRV002-SW-95 – QNX Neutrino Device Driver Page 18 of 21

devctl3.3

NAME

devctl() – device control functions

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>
#include <devctl.h>

int devctl
(

int filedes,
int dcmd,
void *data_ptr,
size_t n_bytes,
int *dev_info_ptr

)

DESCRIPTION

The devctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument dcmd specifies the control code for the operation.

The arguments data_ptr and n_bytes depends on the command and will be described for each
command in detail later in this chapter. Usually data_ptr points to a buffer that passes data between
the user task and the driver and n_bytes defines the size of this buffer.

The argument dev_info_ptr is unused for the special devctl functions of the TDRV002 driver and
should be set to NULL.

The following devctl command codes are defined in tdrv002.h and can be used in addition to the
standard devctl functions for tty devices.

Value Description

DCMD_TDRV002_SET_TRANSC Configure programmable transceiver interface

See behind for more detailed information on each control code.

To use these TDRV002 specific control codes, the header file tdrv002.h must be included by
the application.

TDRV002-SW-95 – QNX Neutrino Device Driver Page 19 of 21

RETURNS

On success, EOK is returned. In the case of an error, the appropriate error code is returned by the
function (not in errno!).

ERRORS

Returns only Neutrino specific error codes, see Neutrino Library Reference.

Other function dependent error codes will be described for each devctl code separately.

The TDRV002 driver always returns standard QNX error codes.

SEE ALSO

Library Reference - devctl()

TDRV002-SW-95 – QNX Neutrino Device Driver Page 20 of 21

3.3.1 TDRV002_DCMD_SET_TRANSC

NAME

TDRV002_DCMD_SET_TRANSC – setup programmable transceiver

DESCRIPTION

This special devctl function configures programmable transceivers. The function allows changing the
transceiver configuration while the driver process is running. A pointer to the new configuration value
(unsigned char) and the size of the value (1 byte) are passed by the parameters data_ptr and n_bytes
to the device.

For a more detailed description of programming the transceivers, please refer to the
corresponding hardware User Manual.

The configuration value is an ORed value of the following defines (tdrv002.h):

Definition Description

TDRV002_CFG_RS485_RS232 If set RS485 interface is selected, else RS232 interface
is selected

TDRV002_CFG_HDPLX If set half-duplex interface is selected, else full-duplex
interface is selected

TDRV002_CFG_RENA If set auto RS485 receiver is enabled, else auto RS485
receiver is disabled

TDRV002_CFG_RTERM If set receive termination is enabled, else receive
termination is disabled

TDRV002_CFG_TTERM If set transmit termination is enabled, else transmit
termination is disabled

TDRV002_CFG_SLEWLIMIT If set slew limit mode is selected, else slew limit mode is
disabled

TDRV002_CFG_SHDN If set transceiver is shut down, else transceiver works in
the configured mode

TDRV002_CFG_AUTO_RS485 If set the UART controller uses auto RS485 mode, else
UART controller does not use the auto RS485 mode

TDRV002-SW-95 – QNX Neutrino Device Driver Page 21 of 21

There are also some typical transceiver configuration predefined in tdrv002.h, which can be used
instead of building an own configuration value.

Definition Description

TDRV002_INTF_OFF Shutdown mode / disable interface

TDRV002_INTF_RS232 RS232 mode

TDRV002_INTF_RS422 RS422 (Multidrop / Full Duplex)

TDRV002_INTF_RS485FDM RS485 Full Duplex (Master)

TDRV002_INTF_RS485FDS RS485 Full Duplex (Slave)

TDRV002_INTF_RS485HD RS485 Half Duplex

EXAMPLE

#include <tdrv002.h>

int ttyDev;
int retVal;
unsigned char config;

ttyDev = open(“/dev/ser3”, O_RDWR);
if (ttyDev == -1)
{

/* device not opened ==> error handling */
}

/* setup RS422 interface (use predefined value) */
config = TDRV002_INTF_RS422;
retVal = devctl(ttyDev,

TDRV002_DCMD_SET_TRANSC,
&config,
sizeof(config),
NULL);

if (retVal!= EOK)
{

/* setting transceiver interface failed ==> error handling */
}

close(ttyDev);

ERRORS

There are no special error codes.

	1	Introduction
	2	Installation
	2.1	Building Executables on Native Systems
	2.1.1	Build the Device Driver
	2.1.2	Build the Example Applications

	2.2	Building Executables with Momentics IDE (5.0)
	2.2.1	Build the Device Driver
	2.2.2	Build the Example Application
	2.2.3	Integrate the Device Driver Files to a QNX-Image

	2.3	Building Executables with Momentics IDE (7.0)
	2.3.1	Build the Device Driver
	2.3.2	Build the Example Applications
	2.3.3	Integrate the Device Driver Files to a QNX-Image

	2.4	Start the Driver Process
	2.5	Configuration File
	2.6	Avoiding Data Loss

	3	Device Input/Output functions
	3.1	open
	3.2	close
	3.3	devctl
	3.3.1	TDRV002_DCMD_SET_TRANSC

