
The Embedded I/O Company

TDRV008-S
QNX6-Neutrino Dev

3x 16 bit I/O Ports with 512 Word

Version 1.0.x

User Manu
Issue 1.0.0

April 2007

TEWS TECHNOLOGIES GmbH TEWS TEC
Am Bahnhof 7
25469 Halstenbek, Germany
www.tews.com

Phone: +49 (0) 4101 4058 0
Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com

9190 Doub
Suite 127,
www.tews.
W-95
ice Driver

FIFO and Handshake

al

HNOLOGIES LLC
le Diamond Parkway,
Reno, NV 89521, USA
com

Phone: +1 (775) 850 5830
Fax: +1 (775) 201 0347
e-mail: usasales@tews.com

TDRV008-SW-95 – QNX Neutrino Device Driver Page 2 of 24

TDRV008-SW-95

QNX6-Neutrino Device Driver

3x 16 bit I/O Ports with 512 Word FIFO and
Handshake

Supported Modules:
TPMC682

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2007 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue April 4, 2007

TDRV008-SW-95 – QNX Neutrino Device Driver Page 3 of 24

Table of Contents
1 INTRODUCTION... 4
2 INSTALLATION.. 5

2.1 Build the device driver ...5
2.2 Start the driver process.. 6

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 7
3.1 open() ...7
3.2 close()...8
3.3 devctl() ...9

3.3.1 DCMD_TDRV008_READ...11
3.3.2 DCMD_TDRV008_WRITE ...14
3.3.3 DCMD_TDRV008_GETPORT ...17
3.3.4 DCMD_TDRV008_SETPORT ...19
3.3.5 DCMD_TDRV008_CONFPORT ..21
3.3.6 DCMD_TDRV008_FLUSHPORTS ..24

TDRV008-SW-95 – QNX Neutrino Device Driver Page 4 of 24

1 Introduction
The TDRV008-SW-95 QNX6-Neutrino device driver allows the operation of TDRV008 compatible
devices on QNX6-Neutrino operating systems.

The TDRV008 device driver is basically implemented as a user installable Resource Manager. The
standard file (I/O) functions (open, close and devctl) provide the basic interface for opening and
closing a file descriptor and for performing device I/O and control operations.

The TDRV008 device driver includes the following functions:

 buffered read and write of the 16-bit ports (0, 1 & 2) in pulsed or interlocked handshake mode
 configure ports (direction, mode and hardware timeout)
 hardware FIFO flush
 write to the 8-bit GPO port 5
 read from the 8-bit GPI port 4

The TDRV008-SW-95 device driver supports the modules listed below:

TPMC682 3 x 16 bit I/O Ports with 512 Word FIFO and Handshake PMC

In this document all supported modules and devices will be called TDRV008. Specials for
certain devices will be advised.

To get more information about the features and use of TPMC682 devices it is recommended to read
the manuals listed below.

TPMC682 User manual
TPMC682 Engineering Manual

TDRV008-SW-95 – QNX Neutrino Device Driver Page 5 of 24

2 Installation
Following files are located on the distribution media:

Directory path ‘.\TDRV008-SW-95\’:

TDRV008-SW-95-SRC.tar.gz GZIP compressed archive with driver source code
TDRV008-SW-95-1.0.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

For installation the files have to be copied to the desired target directory.

The GZIP compressed archive TDRV008-SW-95-SRC.tar.gz contains the following files and
directories:

Directory path ‘./tdrv008/’:

/driver/tdrv008.c Driver source code
/driver/tdrv008.h Definitions and data structures for driver and application
/driver/tdrv008def.h Device driver include
/driver/node.c Queue management source code
/driver/node.h Queue management definitions
/driver/nto/* Build path
/example/tdrv008exa.c Example application
/example/nto/* Build path

For installation copy the tar-archive into the /usr/src directory and unpack it (e.g. tar –xvf
TDRV008-SW-95-SRC.tar.gz). After that the necessary directory structure for the automatic build
and the source files are available underneath the new directory called tdrv008.

In order to perform an installation, extract all files of the archive TDRV008-SW-95-SRC.tar.gz to
the /usr/src directory. Otherwise the automatic build with make will fail.

2.1 Build the device driver
Change to the /usr/src/tdrv008/driver directory

Execute the Makefile:

make install
After successful completion the driver binary (tdrv008) will be installed in the /bin directory.

Build the example application

Change to the /usr/src/tdrv008/example directory

Execute the Makefile:

make install
After successful completion the example binary (tdrv008exa) will be installed in the /bin directory.

TDRV008-SW-95 – QNX Neutrino Device Driver Page 6 of 24

2.2 Start the driver process
To start the TDRV008 device driver respective you have to enter the process name with optional
parameter from the command shell or in the startup script.

tdrv008 [-v] &

The TDRV008 Resource Manager registers created devices in the Neutrinos pathname space under
following names.

/dev/tdrv008_0
/dev/tdrv008_1
…
/dev/tdrv008_x

This pathname must be used in the application program to open a path to the desired TDRV008
device.

fd = open(“/dev/tdrv008_0”, O_RDWR);

For debugging, you can start the TDRV008 Resource Manager with the –v option. Now the Resource
Manager will print versatile information about TDRV008 configuration and command execution on the
terminal window.

tdrv008 –v &

TDRV008-SW-95 – QNX Neutrino Device Driver Page 7 of 24

3 Device Input/Output functions
This chapter describes the interface to the device driver I/O system.

3.1 open()

NAME

open() - open a file descriptor

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *pathname, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the TDRV008 named by pathname.
The flags argument controls how the file is to be opened. TDRV008 devices must be opened
O_RDWR.

EXAMPLE

int fd;

fd = open(“/dev/tdrv008_0”, O_RDWR);

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

ERRORS

Returns only Neutrino specific error codes, see Neutrino Library Reference.

SEE ALSO

Library Reference - open()

TDRV008-SW-95 – QNX Neutrino Device Driver Page 8 of 24

3.2 close()

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

...

if (close(fd) != 0)
{

/* handle close error conditions */
}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

Returns only Neutrino specific error code, see Neutrino Library Reference.

SEE ALSO

Library Reference - close()

TDRV008-SW-95 – QNX Neutrino Device Driver Page 9 of 24

3.3 devctl()

NAME

devctl() – device control functions

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>
#include <devctl.h>

int devctl
(

int filedes,
int dcmd,
void *data_ptr,
size_t n_bytes,
int *dev_info_ptr

)

DESCRIPTION

The devctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument dcmd specifies the control code for the operation.

The arguments data_ptr and n_bytes depends on the command and will be described for each
command in detail later in this chapter. Usually data_ptr points to a buffer that passes data between
the user task and the driver and n_bytes defines the size of this buffer.

The argument dev_info_ptr is unused for the TDRV008 driver and should be set to NULL.

The following devctl command codes are defined in tdrv008.h:

Value Description
DCMD_TDRV008_READ Buffered read from a 16-bit handshake port
DCMD_TDRV008_WRITE Buffered write to a 16-bit handshake port

DCMD_TDRV008_GETPORT Get the state of the 8-bit GPI port #4
DCMD_TDRV008_SETPORT Set the state of the 8-bit GPO port #5

DCMD_TDRV008_CONFPORT Port setup

DCMD_TDRV008_FLUSHPORTS Flush the hardware FIFOs of the 16-bit ports

See behind for more detailed information on each control code.

TDRV008-SW-95 – QNX Neutrino Device Driver Page 10 of 24

To use these TDRV008 specific control codes the header file tdrv008.h must be included in the
application.

RETURNS

On success, EOK is returned. In the case of an error, the appropriate error code is returned by the
function (not in errno!).

ERRORS

Returns only QNX-Neutrino specific error codes, see Neutrino Library Reference. For each devctl
function the error codes are described separately.

SEE ALSO

Library Reference - devctl()

TDRV008-SW-95 – QNX Neutrino Device Driver Page 11 of 24

3.3.1 DCMD_TDRV008_READ

NAME

DCMD_TDRV008_READ – Buffered read from a 16-bit handshake port

DESCRIPTION

This TDRV008 control function reads 16-bit values from the FIFO of a given port. If data isn’t available
when calling this function a timeout is used to implement a blocking read. A pointer to the callers I/O
buffer (TDRV008_RW_BUFFER) and the size of this structure are passed by the parameters data_ptr
and n_bytes to the device.

The TDRV008_RW_BUFFER structure has the following layout:

typedef struct
{

int portNo;
unsigned long flags;
int timeout;
int bufferSize;
int validWords;
unsigned short data[TDRV008_FIFOSIZE];

} TDRV008_RW_BUFFER, *PTDRV008_RW_BUFFER;

Members

portNo
This parameter holds the port number to read from. Valid values are 0, 1 and 2.

flags
This parameter decides about non-blocking and blocking read requests. For non-blocking
operation set flags to TDRV008_F_RW_NOWAIT. To initialize a blocking read request set flags
to zero.

timeout
This parameter defines the read timeout with a given resolution of one second. So if you set it to
1 the driver should wait at least one second and worst case two seconds before terminating the
certain read request.

bufferSize
This parameter defines the maximum count of words to read. The data storage has to be large
enough to receive the specified amount of 16-bit words.

TDRV008-SW-95 – QNX Neutrino Device Driver Page 12 of 24

validWords
This in and out parameter holds the count of data words actually read. After read requests
completion maybe not all data words given by bufferSize were received in the given time. For
this purpose validWords is used for the read request result. If it is set to a value greater than 0
when starting the read request and blocking read is used then validWords is meant as an offset
to the first element of the data buffer. So successive read requests that are partially completed
can use the same I/O buffer until final read request completion.

data

This field parameter is used as data storage. It has a fixed size of TDRV008_FIFOSIZE words
to match the hardware fifo size.

Example

#include “tdrv008.h”

int fd;
int result;
TDRV008_RW_BUFFER rwBuf;
int i;

rwBuf.portNo = 1; // read from port 1
rwBuf.flags = 0; // blocking read
rwBuf.timeout = 5; // wait at least 5 seconds
rwBuf.bufferSize = 177; // we want to receive 177 words
rwBuf.validWords = 0; // no data received yet
/* rwBuf.data[] will be filled with incoming data words */

result = devctl (fd, // TDRV008 device handle
DCMD_TDRV008_READ, // control code
&rwBuf, // I/O buffer
sizeof(rwBuf),
NULL);

if(result == EOK) {
// Process data, rwBuf.validWords is the real read result
for (i = 0; i < rwBuf.validWords; i++)
{

printf(“@0x&04X: 0x%02X”, i, rwBuf.data[i]);
}
...

}
else {

// Process devctl() error
...

}
...

TDRV008-SW-95 – QNX Neutrino Device Driver Page 13 of 24

ERRORS

EFAULT Invalid pointer to the user buffer.
EINVAL An argument specified value is invalid.

ECHRNG The port specified by I/O buffer member portNo doesn’t exist.
EIO The port was configured as output port. It has to be an input port to

start a read request.
EBUSY The certain port is in use.

SEE ALSO

Library Reference - devctl()

TDRV008-SW-95 – QNX Neutrino Device Driver Page 14 of 24

3.3.2 DCMD_TDRV008_WRITE

NAME

DCMD_TDRV008_WRITE – Buffered write to a 16-bit handshake port

DESCRIPTION

This TDRV008 control function writes 16-bit values to the specified buffered output port. A pointer to a
callers I/O buffer (TDRV008_RW_BUFFER) and the size of this structure are passed by the
parameters data_ptr and n_bytes to the device.

The TDRV008_RW_BUFFER structure has the following layout:

typedef struct
{

int portNo;
unsigned long flags;
unsigned long timeout;
int bufferSize;
int validWords;
unsigned short data[TDRV008_FIFOSIZE];

} TDRV008_RW_BUFFER, *PTDRV008_RW_BUFFER;

Members

portNo

This parameter holds the port number of the handshake port to write on. Valid values are 0, 1
and 2.

flags
This parameter is not used for this IOCTL function.

timeout
This parameter defines the write timeout with a given resolution of one second. So if you set it
to 1 the driver should wait at least one second and worst case two seconds before terminating
the certain write request.

bufferSize
This parameter defines the count of words to write to the hardware FIFO of the certain
handshake port.

TDRV008-SW-95 – QNX Neutrino Device Driver Page 15 of 24

validWords
This in and out parameter holds the count of data words actually written. In the case of a full
FIFO the write process can’t send more data words to the certain port and will block for timeout
seconds. For this purpose validWords is used for the write request result. If it is set to a value
greater than 0 when starting the write request then validWords is meant as an offset to the first
element of the data buffer. Successive write requests that are partially completed can use the
same I/O buffer until final write request completion.

data

This field parameter is used as data source during the handshake transmission. It has a fixed
maximum size of TDRV008_FIFOSIZE words to match the hardware FIFO size.

Example

#include “tdrv008.h”

...

int fd;
int result;
TDRV008_RW_BUFFER rwBuf;
int i;

rwBuf.portNo = 0; // read from port 1
rwBuf.timeout = 2; // wait at least 2 seconds
rwBuf.bufferSize = 411; // we want to send 411 words
rwBuf.validWords = 0; // start with element 0

for (i = 0; i < rwBuf.bufferSize; i++)
{

rwBuf.data[i] = ...; // user data
}

result = devctl (fd, // TDRV008 device handle
DCMD_TDRV008_WRITE, // control code
&rwBuf, // I/O buffer
sizeof(rwBuf),
NULL);

...

TDRV008-SW-95 – QNX Neutrino Device Driver Page 16 of 24

...

if(result == EOK) {
// Process data, rwBuf.validWords is the real write result
for (i = 0; i < rwBuf.validWords; i++)
{

printf(“@0x&04X: 0x%02X”, i, rwBuf.data[i]);
}
...

}
else {

// Process devctl() error
...

}
...

ERRORS

EFAULT Invalid pointer to the user buffer.
EINVAL An argument specified value is invalid.

ECHRNG The port specified by I/O buffer member portNo doesn’t exist.
EIO The port was configured as input port. It has to be an output port to

start a write request.
EBUSY The certain port is in use.

SEE ALSO

Library Reference - devctl()

TDRV008-SW-95 – QNX Neutrino Device Driver Page 17 of 24

3.3.3 DCMD_TDRV008_GETPORT

NAME

DCMD_TDRV008_GETPORT – Get the state of the 8-bit GPI port #4

DESCRIPTION

This TDRV008 control function reads the state of the free input lines of the 8 bit general purpose
port 4. Only the upper 5 bits of the value are valid the lower 3 bits will always be set to 0. A pointer to a
caller’s output buffer (unsigned char) and the size of this structure are passed by the parameters
data_ptr and n_bytes to the device.

Example

#include “tdrv008.h”
...
int fd;
int result;
unsigned char ucVal;

result = devctl(fd, // TDRV008 handle
DCMD_TDRV008_GETPORT, // control code
&ucVal, // input buffer
sizeof(ucVal),
NULL);

/* Check the result of the last device I/O control operation */
if(result == EOK)
{

printf("OK\n");
printf(" port4 (bit7..3): %02Xh\n", ucVal);
...

}
else
{

// Process devctl() error
...

}
...

TDRV008-SW-95 – QNX Neutrino Device Driver Page 18 of 24

ERRORS

EFAULT Invalid pointer to the user buffer.

SEE ALSO

Library Reference - devctl()

TDRV008-SW-95 – QNX Neutrino Device Driver Page 19 of 24

3.3.4 DCMD_TDRV008_SETPORT

NAME

DCMD_TDRV008_SETPORT – Set the state of the 8-bit GPO port #5

DESCRIPTION

This TDRV008 control function sets the state of the free output lines of the general purpose port 5.
Only the upper 5 bits of the value are valid the lower 3 bits are ignored. A pointer to a callers input
buffer (unsigned char) and the size of this structure are passed by the parameters data_ptr and
n_bytes to the device.

Example

#include “tdrv008.h”
...
int fd;
int result;
unsigned char ucVal;

ucVal = 0x42; // bits 0..2 are ignored -> so 0x40 will be written

result = devctl(fd, // TDRV008 handle
DCMD_TDRV008_SETPORT, // control code
&ucVal,
sizeof(ucVal),
NULL);

/* Check the result of the last device I/O control operation */
if(result == EOK)
{

printf("OK\n");
...

}
else
{

// Process devctl() error
...

}
...

TDRV008-SW-95 – QNX Neutrino Device Driver Page 20 of 24

ERRORS

EFAULT Invalid pointer to the user buffer.

SEE ALSO

Library Reference - devctl()

TDRV008-SW-95 – QNX Neutrino Device Driver Page 21 of 24

3.3.5 DCMD_TDRV008_CONFPORT

NAME

DCMD_TDRV008_CONFPORT – Port setup

DESCRIPTION

This TDRV008 control function configures a specified handshake port. A pointer to a callers
configuration buffer (TDRV008_CONF_BUFFER) and the size of this structure are passed by the
parameters data_ptr and n_bytes to the device.

The TDRV008_CONF_BUFFER structure has the following layout:

typedef struct
{

int portNo;
unsigned long flags;
int enaOutput;
unsigned short fifoTimeout;
unsigned short fifoThreshold;

} TDRV008_CONF_BUFFER, *PTDRV008_CONF_BUFFER;

Members

portNo
This parameter specifies the handshake port. Valid values are 0, 1 and 2.

flags
This parameter specifies the output handshake mode. (Refer to the User Manual of your
module for a detailed description of the output handshake modes). Following values are valid:

TDRV008_F_CONF_HOUT_HSNONE No output handshake
TDRV008_F_CONF_HOUT_HSINTERLOCKED Interlocked output handshake

TDRV008_F_CONF_HOUT_HSPULSED Pulsed output handshake

enaOutput

This parameter defines the direction of the port. If this parameter is set TRUE the port will be
configured as an output port, if it is specified FALSE the port will be configured as input.

fifoTimeout
This parameter specifies the hardware FIFO timeout value. The value will be directly written to
the module (Register TCPRx - refer to the User Manual of your module for more information).
This value is only used for input ports.

TDRV008-SW-95 – QNX Neutrino Device Driver Page 22 of 24

fifoThreshold
This parameter specifies the FIFO threshold value. This value will be directly written to the
module (Register FIFO_FTRx - refer to the User Manual of your module for more information).
Valid values 1 to 512.

EXAMPLE

#include “tdrv008.h”

...

int fd;
int result;
UCHAR ucVal;
TDRV008_CONF_BUFFER confBuf;

...

/* Setup handshake port 0 */
/* - output */
/* - interlocked output handshake */
/* - threshold: 256 */
confBuf.portNo = 0;
confBuf.flags = TDRV008_F_CONF_HOUT_HSINTERLOCKED;
confBuf.enaOutput = TRUE;
confBuf.fifoTimeout = 0; /* not used */
confBuf.fifoThreshold = 256;

printf("\nConfigure port ... ");
result = devctl(fd, // TDRV008 handle

DCMD_TDRV008_CONFPORT, // control code
&confBuf,
sizeof(confBuf),
NULL);

...

TDRV008-SW-95 – QNX Neutrino Device Driver Page 23 of 24

...

//
// Check the result of the last device I/O control operation
//
if(result == EOK)
{

printf("OK\n");
}
else
{

// Process devctl() error
}
...

ERRORS

EFAULT Invalid pointer to the user buffer.

EINVAL An argument specified value is invalid.
ECHRNG The port specified by I/O buffer member portNo doesn’t exist.

EIO The port was configured as input port. It has to be an output port to
start a write request.

EBUSY The certain port is in use.

SEE ALSO

Library Reference - devctl()

TDRV008-SW-95 – QNX Neutrino Device Driver Page 24 of 24

3.3.6 DCMD_TDRV008_FLUSHPORTS

NAME

DCMD_TDRV008_FLUSHPORTS – Flush the hardware FIFOs of the 16-bit ports

DESCRIPTION

This TDRV008 control function flushes the FIFOs of all handshake ports (0, 1, and 2). This may be
useful after configuration. The parameter pointer data_ptr and size n_bytes are not used for this devctl
function.

EXAMPLE

#include “tdrv008.h“

...
int fd;
int result;

printf("\nFlush ports ... ");
result = devctl(fd, // TDRV008 handle

DCMD_TDRV008_FLUSHPORTS, // control code
NULL,
0,
NULL);

//
// Check the result of the last device I/O control operation
//
if(result == EOK)
{

printf("OK\n");
}
else
{

// Process devctl() error
...

}
...

SEE ALSO

Library Reference - devctl()

	Introduction
	Installation
	Build the device driver
	Start the driver process

	Device Input/Output functions
	open()
	close()
	devctl()
	DCMD_TDRV008_READ
	DCMD_TDRV008_WRITE
	DCMD_TDRV008_GETPORT
	DCMD_TDRV008_SETPORT
	DCMD_TDRV008_CONFPORT
	DCMD_TDRV008_FLUSHPORTS

