

TIP302

Multiprotocol Communication IP (based on MC68302)

Version 1.0

User Manual

Issue 1.5 October 2008

TEWS TECHNOLOGIES GmbH

Am Bahnhof 7 25469 Halstenbek, Germany www.tews.com Phone: +49-(0)4101-4058-0 Fax: +49-(0)4101-4058-19 e-mail: info@tews.com

TEWS TECHNOLOGIES LLC

9190 Double Diamond Parkway, Suite 127, Reno, NV 89521, USA www.tews.com Phone: +1 (775) 850 5830 Fax: +1 (775) 201 0347 e-mail: usasales@tews.com

TIP302-12This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.(based on MC68302)TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.TEWS TECHNOLOGIES GmbH is not liable for any

LEWS LECHNOLOGIES GmbH is not liable for any damage arising out of the application or use of the device described herein.

© 2002-2008 by TEWS TECHNOLOGIES GmbH

All trademarks mentioned are property of their respective owners.

TIP302 User Manual Issue 1.5

Issue	Description	Date
1.0	Initial Issue	January 2002
1.1	General Revision	February 2002
1.2	Correction of Base Value in Basic Code Example	March 2002
1.3	New address TEWS LLC	September 2006
1.4	Supplement to Technical Specification	September 2007
1.5	Added weight to Technical Specification table	October 2008

Table of Contents

1	PRODUCT DESCRIPTION	6
2	TECHNICAL SPECIFICATION	7
3	ID PROM CONTENT	
4	ADDRESS MAPS	9
	4.1 IP Bus Address Map	9
	4.1.1 I/O Space Addressing 4.1.1.1 Reset Register	9 10
	4.1.1.2 Interrupt Request Register 4.1.1.3 Interrupt Vector Register	11 12
	4.1.1.4 Memory Enable Register 4.1.2 Memory Space Addressing	13 13
	4.2 Local Bus Address Map	14
	 4.2.1 On board SRAM 4.2.2 MC68302 System Block 4.2.3 Interrupt Register 	14
	4.2.3.1 Interrupt Vector Register 4.2.3.2 Interrupt Request Register	
5	PROGRAMMING	
	5.1 IP Host CPU	17
	5.2 MC68302 Program Code	17
	5.2.1 Basic Code Example 5.3 Getting Started	
6	I/O PIN ASSIGNMENT	20

Table of Figures

FIGURE 1-1: BLOCK DIAGRAM	6
FIGURE 2-1: TECHNICAL SPECIFICATION	7
FIGURE 3-1: TIP302-12 V1.0 ID PROM CONTENTS	8
FIGURE 4-1: I/O SPACE REGISTERS	9
FIGURE 4-2: RESET REGISTER	10
FIGURE 4-3: INTERRUPT REQUEST REGISTER	11
FIGURE 4-4: INTERRUPT VECTOR REGISTER	12
FIGURE 4-5: MEMORY ENABLE REGISTER	13
FIGURE 4-6 : LOCAL BUS ADDRESS MAP EXAMPLE	16
FIGURE 6-1: I/O PIN ASSIGNMENT	21

1 **Product Description**

The TIP302 is an IndustryPack® compatible module with a serial communication I/O interface using the Motorola MC68302 Multiprotocol Communication Processor running at 25 MHz.

The MC68302 contains a 68K core processor, a micro-coded RISC communication processor, 6 serial DMA channels, 3 timers, an interrupt controller, 3 independent full-duplex serial communication controllers (SCCs) and 1152 bytes of on-chip RAM.

The TIP302 provides TTL level interface for all 3 SCC's of the MC68302 at the IP I/O connector. A variety of physical layer standards, such as RS232, RS422, RS485 or ISDN are supported by the use of custom transition modules.

Internal microcode in the 68302 supports a variety of protocols, such as BISYNC, HDLC, SDLC, UART, DDCMP, V.110, ISDN (2B+D) and transparent modes.

The TIP302 provides 1 Mbyte (512 Kbit x 16) of static RAM (SRAM) as dual-port memory for both, MC68302 code and user data. The code is downloaded to the SRAM by the IP host CPU prior to removing the MC68302 reset signal by writing to a control register. Once the MC68302 reset signal is removed, the MC68302 starts fetching code from the SRAM.

The SRAM, the MC68302 registers and the MC68302 on-chip RAM are accessible by the MC68302 and by the IP host CPU through arbitration. The local bus arbitration is transparent to the IP host CPU.

Both the IP host CPU and the MC68302 are capable of generating interrupts to each other.

Figure 1-1: Block Diagram

2 **Technical Specification**

IP Interface			
IP Interface	Single Size IndustryPack® Logic Interface		
On board Devices			
Processor	Motorola Mo	C68302-PV (25 MHz)	
	Including 11	52 byte on-chip RAM and Communication Processor	
Memory	512 Kbit x 1	6 (1Mbyte) SRAM	
I/O Interface			
Interface Connector	50-conductor flat cable		
Number of Serial Channels	3		
Interface	TTL level interface for all 3 SCC's		
Serial Channel Signals	RXD, TXD, RCLK, TCLK, CD, CTS, RTS, BRG		
(per Channel)			
Additional I/O Signals	Timer Input	, Interrupt Request Input, 4 General Purpose I/O Lines	
Physical Data			
Power Requirements	115mA typic	cal @ + 5V DC	
Temperature Range	Operating 0 °C to +70 °C		
	Storage -40°C to +85 °C		
MTBF	219183 h		
Humidity	5 – 95 % non-condensing		
Weight	27g		

Figure 2-1: Technical Specification

3 ID PROM Content

ID_PROM CONTENT						
Address	Address Function Content					
01h	ASCII 'I'	49h				
03h	ASCII 'P'	50h				
05h	ASCII 'A'	41h				
07h	ASCII 'C'	43h				
09h	Manufacturer ID	B3h				
0Bh	Model Number	32h				
0Ch	Revision	10h				
0Fh	RESERVED	00h				
11h	Driver-ID Low-Byte	00h				
13h	Driver-ID High-Byte	00h				
15h	Number of bytes used	0Ch				
17h	CRC	1Eh				

Figure 3-1: TIP302-12 V1.0 ID PROM Contents

4 Address Maps

4.1 IP Bus Address Map

The IP host CPU can access:

- Control/Status Registers in the IP I/O space
- 1 Mbyte on board SRAM in the IP memory space (If MC68302 is in total-reset or if MC68302 is running and configured)
- MC68302 basic registers (BAR, SCR, CKCR) in the IP memory space (If MC68302 is running)
- MC68302 4K system block in the IP memory space (If MC68302 is running and configured)

4.1.1 I/O Space Addressing

The TIP302 provides four 8-bit wide registers accessible in the IP I/O space.

I/O SPACE REGISTERS				
Register Name	Register Symbol	Size	Address	
Reset Register	RST_REG	8-bit	01h	
Interrupt Request Register	IRQ_REG	8-bit	03h	
Interrupt Vector Register	VEC_REG	8-bit	05h	
Memory Enable Register	MEN_REG	8-bit	07h	

Figure 4-1: I/O Space Registers

4.1.1.1 Reset Register

RESET REGISTER				
Bit Number	Bit Symbol	Access	Description	
7			Reads : Always 0b	
(MSB)	-	-	Writes : No effect	
6				
5				
4				
3				
2				
1	HALT#	R/W	0 : Assert local bus HALT# signal (reset value) 1 : De-assert local bus HALT# signal	
0 (LSB)	RESET#	R/W	0 : Assert local bus RESET# signal (reset value) 1 : De-assert local bus RESET# signal	

Figure 4-2: Reset Register

The Reset Register is used to hold the MC68302 in a state called total-reset, where the MC68302 is stopped from executing or fetching program code.

If both the HALT# and RESET# bits are clear (reset value), the MC68302 is held in the total-reset state.

If both the HALT# and RESET# bits are set, the MC68302 is running.

After power up or IP reset the MC68302 is held in the total-reset state.

The IP host CPU then can download program code to the on board SRAM.

After that, the IP host CPU can release the MC68302 by setting both the HALT# and RESET# bits (i.e. writing 03h to the Reset Register).

Then the MC68302 starts fetching program code from the reset vector address.

INTERRUPT REQUEST REGISTER					
Bit Number	Bit Symbol	Access	Description		
7 (MSB)	-	-	Reads : Always 0b Writes : No effect		
6					
5					
4					
3					
2	IRQ1	R/S	Reads : 0 : No pending interrupt request 1 : Pending interrupt request Writes: 0 : No effect 1 : Generate MC68302 level 1 interrupt request		
1	IRQ6	R/S	Reads : 0 : No pending interrupt request 1 : Pending interrupt request Writes: 0 : No effect 1 : Generate MC68302 level 6 interrupt request		
0 (LSB)	IRQ7	R/S	Reads : 0 : No pending interrupt request 1 : Pending interrupt request Writes: 0 : No effect 1 : Generate MC68302 level 7 interrupt request		

4.1.1.2 Interrupt Request Register

Figure 4-3: Interrupt Request Register

The Interrupt Request Register is used to generate interrupt requests to the MC68302.

The MC68302 must be configured to use the dedicated operational interrupt mode with auto-vectored level sensitive interrupts.

The IP host CPU can generate interrupt requests to the MC68302 by writing 1b to the appropriate IRQ bit in the Interrupt Request Register. Interrupt levels 1, 6, and 7 are available.

The IP host CPU can check the interrupt request status by reading the Interrupt Request Register. If an IRQ bit is set to 1b, the interrupt request is still pending. Cleared IRQ bits indicate that the interrupt request has been acknowledged by the MC68302.

The IRQ bits in the Interrupt Request Register are cleared by hardware during the MC68302 interrupt acknowledge cycle.

Asserting a total-reset to the MC68302 will also clear the Interrupt Request Register.

The reset value of the Interrupt Request Register is 00h.

(1)

Prior setting an IRQ bit in the Interrupt Request Register, the user has to check that the IRQ bit is clear.

4.1.1.3 Interrupt Vector Register

INTERRUPT VECTOR REGISTER					
Bit Number	Bit Symbol	Access	Description		
7					
(MSB)	VEC_BYTE	R/W	Interrupt Vector for IP Host		
6			CPU.		
5					
4					
3					
2					
1					
0					
(LSB)					

Figure 4-4: Interrupt Vector Register

The Interrupt Vector Register contains the interrupt vector for interrupts to the IP host CPU.

A write cycle is the only source which can generate an IP host CPU interrupt request to an Interrupt Request Register in the local bus address map.

Only the IP INT0 interrupt channel is used. The IP INT1 interrupt channel is unused.

The Interrupt Vector Register can also be mapped to the local bus address map. Then it is accessible on the local bus by both the IP host CPU and the MC68302.

The reset value of the Interrupt Vector Register is FFh.

Asserting a total-reset to the local CPU does not alter the content of the Interrupt Vector Register.

(1)

There is no arbitration between local bus writes and IP I/O Space writes to the Interrupt Vector Register.

If the Interrupt Vector Register is written on both the local bus and in the IP I/O space, each write to the Interrupt Vector Register should be verified by a read.

4.1.1.4 Memory Enable Register

MEMORY ENABLE REGISTER						
Bit Number	Bit Symbol	Access	Description			
7						
(MSB)	MEN_BYTE	R/W	Must be set to value ADh to			
6			enable IP Memory space			
5			is not installed.			
4						
3			Meaningless, if on board			
2			jumper is installed.			
1						
0						
(LSB)						

Figure 4-5: Memory Enable Register

If the on board jumper is installed, the Memory Enable Register is meaningless.

If the on board jumper is not installed, the Memory Enable Register must be written with the value ADh to enable IP memory space accesses. For other values the TIP302 will not acknowledge any IP memory space access.

The reset value of the Memory Enable Register is 00h.

4.1.2 Memory Space Addressing

In IP memory space the IP host CPU can access the MC68302 basic registers (BAR, SCR, CKCR), the MC68302 4K system block (on-chip RAM and internal registers) and the on board SRAM.

After power-up or IP reset or when the MC68302 is held in the total-reset state, all IP memory space accesses will be directed to the on board SRAM.

When the MC68302 is taken out of the total-reset state, IP memory space accesses will address the local bus address map as configured by the MC68302 chip select logic.

There is no address translation for IP memory space accesses to the local bus. The IP memory address is directly transferred to the local bus.

The local bus arbitration is a hardware function and is transparent to the IP host CPU.

If the IP host CPU is the local bus master, the local bus A23 address line is always driven to A23 = 0.

As well, the local bus function code lines are driven to FC[2:0] = 101 (Supervisor Data) for local addresses 0000FXh (MC68302 basic registers BAR, SCR, CKCR), and to FC[2:0] = 110 (Supervisor Program) for all other local addresses.

4.2 Local Bus Address Map

The local bus address map consists of three main address regions.

- 1 Mbyte on board SRAM (zero-based, includes MC68302 Exception Vector Table)
- 4 Kbyte MC68302 system block (includes MC68302 on-chip RAM and internal registers)
- Local bus accessible interrupt registers

The local bus address map is configured by the program code in the on board SRAM. It programs the MC68302 basic registers (BAR, SCR) and the MC68302 chip select logic registers (OR0, BR0, OR1, BR1, OR3, BR3).

4.2.1 On board SRAM

The on board SRAM size is 1 Mbyte (512 Kbit x 16) and must be mapped to the address range 0h - FFFFFh.

The chip select signals CS0 and CS1 of the MC68302 chip select logic are used for the on board SRAM.

The CS0 chip select signal must be used and based to address 0h, so that it includes the MC68302 exception vector table (initial stack pointer, reset vector, etc.) and the initial program code section.

The remaining SRAM addresses can be split between the CS0 and CS1 chip select signal.

It is recommended to use the CS0 chip select signal for the code section and the CS1 chip select signal for the data section.

For the MC68302 CS0 and CS1 chip select signals, internally generated DTACK with 6, 5, 4, 3, 2 or 1 wait states must be used. Internally generated DTACK with no wait-state or externally generated DTACK options are not allowed.

IP reset or MC68302 total-reset do not alter the SRAM content.

4.2.2 MC68302 System Block

The base address of the MC68302 system block is defined by the MC68302 BAR register (word at address 0F2h in supervisor data space). The MC68302 system block size is 4K. It resides at local bus address range Base (BAR) - Base (BAR) + Fifth.

The MC68302 4K system block is divided into three sections:

- System RAM at base (BAR) + 0h (576 byte usable)
- Parameter RAM at base (BAR) + 400h (576 byte usable)
- Internal Registers at base (BAR) + 800h

The SAM bit and the EMWS bit in the MC68302 SCR register (long word at address 0F4h in supervisor data space) must be cleared by the program code for proper IP host CPU access to the MC68302 system block.

4.2.3 Interrupt Register

Chip select signal CS3 of the MC68302 chip select logic is used for the local bus accessible interrupt registers.

For the MC68302 CS3 chip select signal, internally generated DTACK with 6, 5, 4, 3, 2 or 1 wait states must be used. Internally generated DTACK with no wait-state or externally generated DTACK options are not allowed.

There are two 8-bit wide interrupt registers accessible on the local bus:

Base (CS3) + 01h: Interrupt Vector Register

Base (CS3) + 03h: Interrupt Request Register (IP host CPU Interrupt)

4.2.3.1 Interrupt Vector Register

This is the same Interrupt Vector Register, which is accessible by the IP host CPU in the IP I/O space.

A byte write to the Interrupt Vector Register at address base (CS3) + 01h must be performed to set the IP bus interrupt vector.

A byte read from the Interrupt Vector Register at address base (CS3) + 01h must be performed to read the actual IP bus interrupt vector.

(1)

The content of the Interrupt Vector Register may be overwritten by the IP host CPU in the IP I/O space.

4.2.3.2 Interrupt Request Register

The Interrupt Request Register is used to generate an interrupt request on the IP bus.

Only the IP INT0 interrupt channel is used. The IP INT1 interrupt channel is unused.

A byte write to the Interrupt Request Register bit at address base (CS3) + 03h must be performed to generate an interrupt request on the IP bus. The write data is meaningless.

If the actual or any previous interrupt request is still pending, the interrupt request status can be checked by performing a byte read from address base (CS3) + 03h. Data line D0 indicates the status. If D0 is read as Low there is no pending interrupt request. If D0 is read as High an interrupt request is pending.

The Interrupt Request Register bit is cleared by hardware during the IP interrupt acknowledge cycle or by IP reset.

(1)

Prior writing to the Interrupt Request Register the user has to check that the Interrupt Request Register bit is clear.

4.2.4 Local Bus Address Map Example

	LOCAL BUS ADDRESS MAP EXAMPLE					
Start Address	End Address	Size	Description	Access	Configuration Register	
Oh	End of Code Section	1Mbyte	SRAM Code Section	MC68302 & IP Host CPU	CS0 (BR0, OR0)	
Start of Data Section (= End of Code Section + 1)	FFFFFh		SRAM Data Section	MC68302 & IP Host CPU	CS1 (BR1, OR1)	
100000h	101FFFh	8Kbyte	Interrupt Register	MC68302 & IP Host CPU	CS3 (BR3, OR3)	
102000h	102FFFh	4Kbyte	MC68302 System Block (Including on- chip RAM and Internal Registers)	MC68302 & IP Host CPU	BAR	

The figure below shows a local bus address map example:

Figure 4-6 : Local Bus Address Map Example

5 Programming

5.1 IP Host CPU

After power-up the MC68302 is held in the total-reset state.

Then all IP memory space accesses are directed to the (zero-based) on board SRAM.

So after power-up the TIP302 is ready for downloading the MC68302 program code to the on board SRAM.

The lowest address that can be used for the first command is address 400h, the address just above the MC68302 exception vector table.

Besides downloading the program code, the IP host CPU must also set-up the initial SSP (long word at address 000h) and the initial PC (long word at address 004h).

After that, the IP host CPU can get the MC68302 running by writing 03h to the Reset Register at address 00h in the IP I/O space.

5.2 MC68302 Program Code

The MC68302 program should first mask off interrupts by programming the MC68302 SR register.

Then the MC68302 program code has to program:

the MC68302 BAR register (word at address 0F2h), to set the base address for the MC68302 4K system block,

the MC68302 SCR register (long word at address 0F4h), to clear the SAM bit and the EMWS bit and

the MC68302 chip select registers in the following order: OR0, BR0, OR1, BR1, OR3, and BR3.

CS0 must be used for zero-based SRAM addresses, so the CS0 base address must be 0h.

CS0 is intended to be used for the code section so it can be configured to check for function code supervisor program and to operate for reads only.

If CS1 is used for the SRAM data section, it has not to be configured to check the function code and to operate for read and write operation.

If CS3 is used for the local bus interrupt register, it has not to be configured to check the function code and to operate for read and write operation.

DTACK has to be programmed for internal DTACK generation with 1 wait-state for all CS0, CS1 and CS3.

External DTACK or internal generated DTACK with no wait-state are not allowed to be used.

If interrupt requests to the MC68302 are used, the GIMR register must be programmed for: dedicated interrupt mode, external (auto-) vector, level sensitive.

5.2.1 Basic Code Example

*	Parameters and F	Regist	ers
	BASE	EQU	\$102000
	BAR	EOU	\$0F2
	SCR	EOU	\$0F4
	BRO	EOU	BASE+\$0830
	ORO	EQU F∩II	BASE+\$0832
	DRU DD1	EQU	
	BR1	EQU Dorr	
	ORI	EQU	BASE+\$0836
	BR3	EQU	BASE+\$083C
	OR3	EQU	BASE+\$083E
*			
*	Code Start Addre	ess	
	ORG	\$000	00400
*			
*	Status Register		
*	Supervisor Mod	le	
*	Mask Off Inter	rupts	
	MOVE W	- 1 ap 0.0	#\$2700 SR
*			πφ27007,BIC
*	Page Address Per	rictor	
*	Dase Address Reg	F AV	G_{rratom} $D_{radi} = 6102000$
	Base Address C)I 4K	$\frac{1}{2}$
л	MOVE.W		#\$0102,BAR
	a . a .] -		
*	System Control F	legist	er
*	SAM = 0, EMWS =	0	
	MOVE.L		#0,SCR
*			
*	Chip Select 0		
*	0h - 7FFFFh (5	512Kby	te)
*	1 WS		
*	FC[2:0] = 110	(Supe	rvisor Program)
*	Read Operatior	ı Only	
	MOVE.W		#\$3F03,OR0
	MOVE.W		#\$C001,BR0
*			
*	Chip Select 1		
*	80000h - FFFF	rh (51	2Kbvte)
*	1 WS		
*	Function Code	Tanor	ed
*	Pead and Write) Oner	ation
	MOVE W	oper	
	MOVE.W		#\$3F00,0K1
<i>.</i>	MOAR'M		HOCIDI'RKI
*			
*	Chip Select 3	_	
*	100000h - 101E	FFh (8Kbyte)
*	1 WS		
*	Function Code	Ignor	ed
*	Read and Write	e Oper	ation
	MOVE.W		#\$3FFC,OR3
	MOVE.W		#\$C201,BR3
*			· · ·


```
* Write $FC to Interrupt Vector Register
MOVE.B #$FC,$100001
*
* Write $ABCD to CS1 Block
LOOP MOVE.W #$ABCD,$80000
* Store same value to on-chip RAM
MOVE.W $80000,$102000
* Loop
BRA.W LOOP
```

During the MC68302 is busy executing this code, the IP host CPU can access:

- Program code at address range 0h 7FFFFh as read only
- Program data at address range 80000h FFFFFh as read / write
- MC68302 basic registers (BAR, SCR) at address range 0F2h and 0F4h
- MC68302 registers and on-chip RAM at address range 102000h 102FFFh
- Interrupt Vector Register at byte address 100001h

(1)

In the code example above, an 8 Mbyte IP memory space is assumed.

For smaller IP memory space configurations it may be necessary to mask the higher address lines in the MC68302 base or option registers.

5.3 Getting Started

CAUTION:

The component is an Electrostatic Sensitive Device (ESD). Use an anti-static mat connected to a wristband when handling or installing the components.

- 1. Install the TIP302 on board jumper and power-up the TIP302 on an IP slot, enabled for 8 Mbyte of IP memory space
- 2. Download the Basic Code Example of section 5.2.1 into the TIP302 SRAM, beginning at address 000400h.

As an alternative the code can be directly assembled to address 000400h.

- 3. Use the debugger, to write long words USP = 000F0000h to address 000000h and PC = 00000400h to address 000004h.
- 4. Remove reset from the MC68302 by writing 03h to IP I/O address 01h (Reset Register). After that the MC68302 will begin code fetching and execution.
- Use the debugger, to read addresses 080000h (SRAM Data Section) and 102000h (MC68302 onchip RAM) and verify the value \$ABCD. Write data to address 080002h (SRAM Data Section) and read it back.

6 I/O Pin Assignment

All serial I/O lines of the MC68302 are routed directly (TTL level) to the local IP I/O connector.

I/O PIN ASSIGNMENT			
I/O Pin Number	I/O Signal	MC68302 Pin Number (144-Pin TQFP)	
1	RXD1 / L1RXD	71	
2	GND		
3	TXD1 / L1TXD	41	
4	GND		
5	RCLK1 / L1RCLK	39	
6	GND		
7	TCLK1 / L1SY0 / SDS1	40	
8	GND		
9	CD1 / L1SY1	73	
10	GND		
11	CTS1 / L1GR	72	
12	GND		
13	RTS1 / L1RQ / GCIDCL	42	
14	GND		
15	BRG1 /	45	
16	GND		
17	RXD2 / PA0	70	
18	GND		
19	TXD2 / / PA1	69	
20	GND		
21	RCLK2 / PA2	68	
22	GND		
23	TCLK2 / PA3	67	
24	GND		
25	CTS2 / PA4	64	
26	RTS2 / PA5	63	
27	CD2 / PA6	62	
28	BRG2 / SDS2 / PA7	61	
29	GND		
30	RXD3 / PA8	59	
31	GND		
32	TXD3 / PA9	58	

I/O PIN ASSIGNMENT		
I/O Pin Number	I/O Signal	MC68302 Pin Number (144-Pin TQFP)
33	GND	
34	RCLK3 / PA10	57
35	GND	
36	TCLK3 / PA11	56
37	GND	
38	CTS3 / SPRXD	74
39	RTS3 / SPTXD	43
40	CD3 / SPCLK	44
41	BRG3 / PA12	53
42	GND	
43	TIN1 / PB3	6
44	GND	
45	IRQ1	
46	GND	
47	PB8	142
48	PB9	141
49	PB10	140
50	PB11	139

Figure 6-1: I/O Pin Assignment