
The Embedded I/O Company

TPMC501-S
Integrity Device

32 Channel 16-bit A

Version 1.1.x

User Manu

Issue 1.1.0

June 2018

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-25
Driver

DC PMC

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC501-SW-25 – Integrity Device Driver Page 2 of 25

TPMC501-SW-25

Integrity Device Driver

32 Channel 16-bit ADC PMC

Supported Modules:
TPMC501

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2012-2018 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue September 5, 2012

1.1.0 Installation changed for Integrity 11
Examples changed into an interactive application

June 4, 2018

TPMC501-SW-25 – Integrity Device Driver Page 3 of 25

Table of Contents

1 INTRODUCTION... 4

2 INSTALLATION.. 5

Driver Installation..52.1

TPMC501 Applications ...52.2

3 API DOCUMENTATION ... 6

tpmc501Open ..63.1

tpmc501Close..83.2

tpmc501GetModuleInfo ..103.3

tpmc501SetModelType ...123.4

tpmc501Read...143.5

tpmc501StartSequencer...173.6

tpmc501StopSequencer ...203.7

tpmc501GetDataBuffer ...223.8

4 APPENDIX.. 25

Example Applications...254.1

TPMC501-SW-25 – Integrity Device Driver Page 4 of 25

1 Introduction
The TPMC501-SW-25 Integrity device driver software allows the operation of the supported PMC
conforming to the Integrity I/O system specification. The software is designed and tested with
Integrity 11.4.4.

The driver software uses mutual exclusion to prevent simultaneous requests by multiple tasks from
interfering with each other.

The TPMC501-SW-25 device driver supports the following features:

 Execute AD conversion and read data
 Choosing gain, channel, input interface for read
 Correction of input data with board-specific calibration data
 Support of ADC sequencer mode
 Configurable sequencer cycle time, input FIFO size, and channel parameters
 Sequencer read with wait and no wait option

The TPMC501-SW-25 supports the modules listed below:

TPMC501 32(16) Channel - 16-bit ADC (PMC)

To get more information about the features and use of supported devices it is recommended to read
the manuals the supported modules listed below.

TPMC501 User Manual

TPMC501-SW-25 – Integrity Device Driver Page 5 of 25

2 Installation
The following files are located on the distribution media:

Directory path TPMC501-SW-25:

tpmc501.c TPMC501 device driver source
tpmc501def.h TPMC501 driver include file
tpmc501.h TPMC501 include file for driver and application
tpmc501api.c Application interface, simplifies device access
tpmc501api.h Include file for API and applications
example/tpmc501exa.c Example application
TPMC501-SW-25-1.1.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

Driver Installation2.1

Copy the TPMC501 driver files into a desired driver or project path. The driver source file tpmc501.c
must be included into the kernel project and the BSP paths must be added to the include search paths
of the file. Set Options… Project Include Directories, then double click and add the new paths:

$(__OS_DIR)/bsp
$(__OS_DIR)/system
$(__OS_DIR)/modules/ghs/bspsrc
$(__OS_DIR)/modules/ghs/bspsrc/support
$(__OS_DIR)/modules/ghs/bspsrc/driver/busspace

Afterwards the project must be rebuilt. The driver will be started automatically after booting the image
and the driver will be requested if a matching device is detected in the system.

For further information building a kernel, please refer to MULTI and INTEGRITY Documentation.

TPMC501 Applications2.2

Copy the TPMC501 API files (tpmc501api.c, tpmc501api.h, and tpmc501.h) into a desired application
path, and include tpmc501api.c into the application project.

The application source file must include tpmc501api.h. If these steps are done, the TPMC501 API can
be used and the devices will be accessible.

TPMC501-SW-25 – Integrity Device Driver Page 6 of 25

3 API Documentation

tpmc501Open3.1

NAME

tpmc501Open() – open a device.

SYNOPSIS

TPMC501_HANDLE tpmc501Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

PARAMETERS

DeviceName

This parameter points to a null-terminated string that specifies the name of the device. The first
TPMC501 device is named “tpmc501_0”, the second device is named “tpmc501_1” and so on.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

/*

** open file descriptor to device

*/

hdl = tpmc501Open(“tpmc501_0”);

if (hdl == NULL)

{

/* handle open error */

}

TPMC501-SW-25 – Integrity Device Driver Page 7 of 25

RETURNS

A device descriptor pointer or NULL if the function fails.

TPMC501-SW-25 – Integrity Device Driver Page 8 of 25

tpmc501Close3.2

NAME

tpmc501Close() – close a device.

SYNOPSIS

TPMC501_STATUS tpmc501Close
(

TPMC501_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

/*

** close the device

*/

result = tpmc501Close(hdl);

if (result != TPMC501_OK)

{

/* handle close error */

}

TPMC501-SW-25 – Integrity Device Driver Page 9 of 25

RETURNS

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC501-SW-25 – Integrity Device Driver Page 10 of 25

tpmc501GetModuleInfo3.3

NAME

tpmc501GetModuleInfo – Get module information data

SYNOPSIS

TPMC501_STATUS tpmc501GetModuleInfo
(

TPMC501_HANDLE hdl,
TPMC501_INFO_BUFFER *pModuleInfo

)

DESCRIPTION

This function reads module information data such as configured module type, location on the PCI bus
and factory programmed correction data.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pModuleInfo

This argument specifies a pointer to the module information buffer.

typedef struct

{

unsigned int Variant;

unsigned int PciBusNo;

unsigned int PciDevNo;

int ADCOffsetCal[4];

int ADCGainCal[4];

} TPMC501_INFO_BUFFER;

Variant

This parameter returns the configured module variant (e.g. 10 for a TPMC501-10).

PciBusNo, PciDevNo

These parameters specify the PCI location of this module.
(This information is not available for TPMC501-SW-25.)

TPMC501-SW-25 – Integrity Device Driver Page 11 of 25

ADCOffsetCal[4]

This array returns the factory programmed offset correction value for the different gains.
Array index 0 contains the value for gain 1, index 1 contains the value for gain 2 and so
forth.

ADCGainCal[4]

This array returns the factory programmed gain correction for the different gains. Array
index 0 contains the value for gain 1, index 1 contains the value for gain 2 and so forth.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

TPMC501_INFO_BUFFER ModuleInfo

result = tpmc501GetModuleInfo(hdl, &ModuleInfo);

if (result != TPMC501_OK)

{

/* handle error */

}

RETURNS

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified TPMC501_HANDLE is invalid.

TPMC501-SW-25 – Integrity Device Driver Page 12 of 25

tpmc501SetModelType3.4

NAME

tpmc501SetModelType – configures the TPMC501 board type

SYNOPSIS

TPMC501_STATUS tpmc501SetModelType
(

TPMC501_HANDLE hdl,
int modType

)

DESCRIPTION

This function configures the TPMC501 board type.

This function must be called after initialization of the ADC device, before any other function
accesses the device.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

modType

This parameter specifies the model type of the TPMC501. The following model types are
supported:

Model Type Description

10 TPMC501-10 --- input range +/- 10V, gains: 1,2,5,10, front panel I/O

11 TPMC501-11 --- input range +/- 10V, gains: 1,2,4,8, front panel I/O

12 TPMC501-12 --- input range 0…10V, gains: 1,2,5,10, front panel I/O

13 TPMC501-13 --- input range 0…10V, gains: 1,2,4,8, front panel I/O

20 TPMC501-20 --- input range +/- 10V, gains: 1,2,5,10, back I/O

21 TPMC501-21 --- input range +/- 10V, gains: 1,2,4,8, back I/O

22 TPMC501-22 --- input range 0…10V, gains: 1,2,5,10, back I/O

23 TPMC501-23 --- input range 0…10V, gains: 1,2,4,8, back I/O

TPMC501-SW-25 – Integrity Device Driver Page 13 of 25

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

/*

** tell the driver that this is a TPMC501-10

*/

result = tpmc501SetModelType(hdl, 10);

if (result != TPMC501_OK)

{

/* handle error */

}

RETURN VALUE

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC501_ERR_INVAL Unsupported or invalid TPMC501 model type
specified

TPMC501_ERR_BUSY The device is busy

TPMC501-SW-25 – Integrity Device Driver Page 14 of 25

tpmc501Read3.5

NAME

tpmc501Read – perform AD conversion and read value

SYNOPSIS

TPMC501_STATUS tpmc501Read
(

TPMC501_HANDLE hdl,
int channel,
int gain,
unsigned int flags,
int *pAdcVal

)

DESCRIPTION

This function starts an AD conversion on a specified input channel and returns the converted value.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

channel

This argument specifies the input channel. Allowed values are 1...32 for single ended interface.
If a differential interface is selected (TPMC501_DIFF set in flags) the values 1…16 are allowed.

gain

This argument specifies the input gain that shall be used. Allowed values are 1, 2, 5, 10 or 1, 2,
4, 8 depending on the module type.

TPMC501-SW-25 – Integrity Device Driver Page 15 of 25

flags

Set of bit flags that control the AD conversion. The following flags could be OR’ed:

Flag Meaning

TPMC501_DIFF If this flag is set the ADC input works in differential mode otherwise
in single-ended (default).

TPMC501_CORR Perform an offset and gain correction with factory calibration data
stored in the TPMC501 EEPROM.

TPMC501_FAST If this flag is set the fast (polled) mode will be used. The driver will
not use interrupts, instead it will wait in a busy loop until the settling
time (if necessary) and the conversion is finished. Conversions using
this mode will be handled faster, but the processor executes a busy
loop and other tasks will not be handled during the loops.

pAdcVal

This argument points to a buffer where the AD value will be returned.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

int in_value;

/*

** read AD value from channel 5 with gain = 2

** single endend input, correction enabled, use fast mode

*/

result = tpmc501Read(hdl,

5,

2,

TPMC501_CORR | TPMC501_FAST,

&in_value);

if (result != TPMC501_OK)

{

/* handle error */

}

else

{

printf(“ADC #5: %d\n”, in_value);

}

TPMC501-SW-25 – Integrity Device Driver Page 16 of 25

RETURN VALUE

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC501_ERR_BUSY The device is busy

TPMC501_ERR_INVAL Invalid parameter specified: invalid channel number,
gain or flag specified

TPMC501_ERR_TIMEOUT The conversion timed out

TPMC501_ERR_CONFIG TPMC501 model type unknown or not configured

TPMC501-SW-25 – Integrity Device Driver Page 17 of 25

tpmc501StartSequencer3.6

NAME

tpmc501StartSequencer – setup and start sequencer operation

SYNOPSIS

TPMC501_STATUS tpmc501StartSequencer
(

TPMC501_HANDLE hdl,
unsigned int CycleTime,
unsigned int NumOfBufferPages,
unsigned int NumOfChannels,
TPMC501_CHAN_CONF *ChanConf

)

DESCRIPTION

This function sets up and starts the sequencer. The setup specifies the channels to be used in
sequencer mode and how they will be setup, defining gain, correction and input interface. Additionally
the sequencer cycle time is defined and depth of the driver’s sequencer FIFO will be configured.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

CycleTime

This argument specifies the repeat frequency of the sequencer in 100μs steps. Each time the
sequencer timer reaches the programmed cycle time a new AD conversion of all active
channels is started. Valid values are in the range from 1 (100μs) to 65535 (6.5535 seconds).

NumOfBufferPages

This argument specifies the number of sample blocks in the ring buffer. A sample block contains
the samples of all channels (NumOfChannels) per sequencer cycle.

NumOfChannels

This argument specifies the number of active channels for this job. The maximum number is 32.

TPMC501-SW-25 – Integrity Device Driver Page 18 of 25

ChanConf

This array of channel configuration structures specifies the configuration of the active channels.
The channel configuration defines the channel number, the gain and some flags. The ordering
of channels in a ring buffer page is the same as defined in this array.

typedef struct

{

unsigned int ChanToUse;

unsigned int gain;

unsigned int flags;

} TPMC501_CHAN_CONF;

ChanToUse

This parameter specifies the input channel number. Valid channels for single-ended
mode are 1…32, for differential mode 1...16.

gain

This Parameter specifies the gain for this channel. Valid gains are 1, 2, 5, 10 for
TPMC501-10/-12/-20/-22 and 1, 2, 4, 8 for TPMC501-11/-13/-21/-23.

flags

Set of bit flags that control the AD conversion. The following flags could be OR’ed:

Flag Meaning

TPMC501_DIFF If this flag is set the ADC input works in differential mode
otherwise in single-ended (default).

TPMC501_CORR Perform an offset and gain correction with factory
calibration data stored in the TPMC501 EEPROM.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

unsigned int CycleTime;

unsigned int NumOfBufferPages;

unsigned int NumOfChannels;

TPMC501_CHAN_CONF ChanConf[TPMC501_MAX_CHAN];

CycleTime = 5000;

NumOfBufferPages = 100;

NumOfChannels = 2;

…

TPMC501-SW-25 – Integrity Device Driver Page 19 of 25

…

ChanConf[0].ChanToUse = 1;

ChanConf[0].gain = 1;

ChanConf[0].flags = TPMC501_CORR;

ChanConf[1].ChanToUse = 20;

ChanConf[1].gain = 5;

ChanConf[1].flags = TPMC501_CORR;

…

// start the sequencer

result = tpmc501StartSequencer(hdl,

CycleTime,

NumOfBufferPages,

NumOfChannels,

ChanConf);

if (result != TPMC501_OK)

{

/* handle error */

}

RETURN VALUE

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC501_ERR_BUSY This error occurs if the sequencer is still running.
Please stop the sequencer before executing this
function.

TPMC501_ERR_INVAL At least one of the parameters is invalid.

TPMC501_ERR_CONFIG TPMC501 model type unknown or not configured

TPMC501_ERR_NOMEM Allocating buffer failed

TPMC501-SW-25 – Integrity Device Driver Page 20 of 25

tpmc501StopSequencer3.7

NAME

tpmc501StopSequencer – Stop the sequencer

SYNOPSIS

TPMC501_STATUS tpmc501StopSequencer
(

TPMC501_HANDLE hdl
)

DESCRIPTION

This function stops execution of the sequencer mode on the specified device.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

result = tpmc501StopSequencer(hdl);

if (result != TPMC501_OK)

{

/* handle error */

}

TPMC501-SW-25 – Integrity Device Driver Page 21 of 25

RETURN VALUE

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC501-SW-25 – Integrity Device Driver Page 22 of 25

tpmc501GetDataBuffer3.8

NAME

tpmc501GetDataBuffer – Get next data block of sequencer samples

SYNOPSIS

TPMC501_STATUS tpmc501GetDataBuffer
(

TPMC501_HANDLE hdl,
unsigned int flags,
int *pData,
unsigned int *pStatus

)

DESCRIPTION

This function returns the next available data block in the ring buffer containing ADC data of configured
sequencer channels.

If specified the function will return immediately, even if there is no data available. If the function should
wait for data the function returns immediately if data is already available in FIFO or wait for sequencer
cycle completion. The function timeout, if there is an abnormal delay during wait.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

flags

Set of bit flags that control the sequencer read. The following flags could be OR’ed:

Flag Meaning

TPMC501_NOWAIT If this flag is set the function will return immediately,
even if there is no data available.

If the flag is not set, the function will wait until data is
available.

TPMC501_FLUSH If this flag is set the sequencer FIFO will be flushed and
the function will wait for new data otherwise the function
will read the next available data set.

TPMC501-SW-25 – Integrity Device Driver Page 23 of 25

pData

This argument is a pointer to an array of integer items where the converted data of a sequencer
cycle will be filled in. The number of channels and the channel configuration was setup with the
tpmc501StartSequencer function. The used buffer must be at least big enough to receive one
integer value for every enabled sequencer channel.
The first array item [0] belongs to the channel configured by ChanConfig[0], the second array
item [1] belongs to the channel configured by ChanConfig[1] and so forth. Please refer to the
example application for details.

pStatus

This argument is a pointer to a variable which returns the actual sequencer error status. Keep in
mind to check this status before each reading. If status is 0 no error is pending. A set of bits
specifies the error condition:

Value Description

TPMC501_BUF_OVERRUN This bit indicates a ring buffer overrun. The error
occurred if there is no space in ring buffer to write the
new AD data. In this case the new AD values are
dismissed. The sequencer was not stopped.

TPMC501_DATA_OVERFLOW This indicates an overrun in the sequencer data RAM.
The error occurred if the driver is too slow to read the
data in time. The sequencer was stopped after this error
occurred.

TPMC501_TIMER_ERR Sequencer timer error (see also TPMC501 hardware
manual). The sequencer was stopped after this error
occurred.

TPMC501_INST_RAM_ERR Sequencer instruction RAM error (see also TPMC501
hardware manual). The sequencer was stopped after
this error occurred.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

unsigned int seqStatus;

int numOfSeqChannels;

int *pData;

numOfSeqChannels = 2; /* Two channels used in sequencer mode */

/* allocate sequence input buffer */

pData = malloc(sizeof(int) * numOfSeqChannels);

…

TPMC501-SW-25 – Integrity Device Driver Page 24 of 25

…

/* read a set of fresh ADC data */

result = tpmc501GetDataBuffer(hdl, TPMC501_FLUSH, pData, &seqStatus);

if (result != TPMC501_OK)

{

/* handle error */

}

…

free(pData);

RETURN VALUE

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified TPMC501_HANDLE is invalid.

TPMC501_ERR_TIMEOUT The expected wait time has been exceeded.

TPMC501_ERR_NODATA The function returned without data

TPMC501_ERR_BUSY The device is not configured in sequencer mode

TPMC501-SW-25 – Integrity Device Driver Page 25 of 25

4 Appendix

Example Applications4.1

The example application shall give an overview about the use of the TPMC501 devices and how to
use the TPMC501 API.

The example application is designed as an interactive console application, so make sure to properly
redirect the standard input and standard output for the example application’s address space. If using a
Dynamic Download Build e.g. in a telnet shell, use the following command:

run -filtered <example_filename> -args <example_address_space>

	1	Introduction
	2	Installation
	2.1	Driver Installation
	2.2	TPMC501 Applications

	3	API Documentation
	3.1	tpmc501Open
	3.2	tpmc501Close
	3.3	tpmc501GetModuleInfo
	3.4	tpmc501SetModelType
	3.5	tpmc501Read
	3.6	tpmc501StartSequencer
	3.7	tpmc501StopSequencer
	3.8	tpmc501GetDataBuffer

	4	Appendix
	4.1	Example Applications

