
The Embedded I/O Company

TPMC501-S
VxWorks Device

32 Channel 16-bit AD

Version 4.2.x

User Manu

Issue 4.2.0

October 2022

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-42
 Driver

C PMC

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC501-SW-42 – VxWorks Device Driver Page 2 of 27

TPMC501-SW-42

VxWorks Device Driver

32 Channel 16-bit ADC PMC

Supported Modules:
TPMC501

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

1999-2022 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue April 15, 1999

1.1 New PCI Configuration July 16, 1999

1.2 Support for x86 target June 19, 2000

1.3 General Revision November 24, 2003

1.3.1 Release.txt added, Issue layout changed March 8, 2005

2.0.0 New driver startup functions, ChangeLog.txt added to file list,
description for tpmc501PciInit changes

January 22, 2007

2.0.1 Function read(): description of parameter maxbytes changed January 11, 2008

3.0.0 VxBus Support, SMP Support and API description added January 18, 2011

3.0.1 Corrections November 17, 2011

4.0.0 New API functions, Chapter “Debugging and Diagnostic” added,
Chapter “Basic I/O Functions” removed

June 10, 2012

4.1.0 VxWorks 7 support added, new installation guide June 12, 2020

6.1.0 ioctl for RTP-Support modified October 21, 2022

TPMC501-SW-42 – VxWorks Device Driver Page 3 of 27

Table of Contents

1 INTRODUCTION ... 4

2 API DOCUMENTATION ... 5

General Functions... 5

2.1.1 tpmc501Open ... 5
2.1.2 tpmc501Close ... 7
2.1.3 tpmc501GetModuleInfo .. 9
Device Access Functions ... 11

2.2.1 tpmc501SetModelType ... 11
2.2.2 tpmc501Read ... 13
2.2.3 tpmc501StartSequencer ... 16
2.2.4 tpmc501StopSequencer ... 19
2.2.5 tpmc501GetDataBuffer ... 21

3 LEGACY I/O SYSTEM FUNCTIONS .. 24

tpmc501PciInit ... 25

4 APPENDIX .. 26

Enable RTP-Support ... 26

Debugging and Diagnostic .. 26

TPMC501-SW-42 – VxWorks Device Driver Page 4 of 27

1 Introduction
The TPMC501-SW-42 VxWorks device driver software allows the operation of the supported PMC
conforming to the VxWorks I/O system specification.

The TPMC501-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled (GEN1 and GEN2) driver model. The VxBus-enabled driver is recommended
for new developments with later VxWorks 6.x release and mandatory for VxWorks 64-bit and SMP
systems.

Both drivers, legacy and VxBus, share the same application programming interface (API).

Both drivers invoke a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

The TPMC501-SW-42 device driver supports the following features:

 start AD conversion and read data
 choosing gain, channel, input interface
 correction of input data with board-specific calibration data
 support of ADC sequencer mode
 Configurable sequencer cycle time, input FIFO size, and channel parameters
 Sequencer read with wait and no wait option

The TPMC501-SW-42 supports the modules listed below:

TPMC501 32(16) Channel - 16-bit ADC (PMC)

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC501 User Manual

TEWS TECHNOLOGIES VxWorks Device Drivers - Installation Guide

TPMC501-SW-42 – VxWorks Device Driver Page 5 of 27

2 API Documentation

 General Functions

2.1.1 tpmc501Open

NAME

tpmc501Open() – opens a device.

SYNOPSIS

TPMC501_HANDLE tpmc501Open
(

char *devicename
)

DESCRIPTION

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

PARAMETERS

devicename

This parameter points to a null-terminated string that specifies the name of the device. The first
TPMC501 device is named “/tpmc501/0”, the second device is named “/tpmc501/1” and so on.

EXAMPLE

#include “tpmc501.h”

TPMC501_HANDLE hdl;

/*

** open file descriptor to device

*/

hdl = tpmc501Open(“/tpmc501/0”);

if (hdl == NULL)

{

 /* handle open error */

}

TPMC501-SW-42 – VxWorks Device Driver Page 6 of 27

RETURNS

A device descriptor pointer, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC501-SW-42 – VxWorks Device Driver Page 7 of 27

2.1.2 tpmc501Close

NAME

tpmc501Close() – closes a device.

SYNOPSIS

TPMC501_STATUS tpmc501Close
(

TPMC501_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl

This value specifies the file descriptor pointer to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc501.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

/*

** close file descriptor to device

*/

result = tpmc501Close(hdl);

if (result != TPMC501_OK)

{

 /* handle close error */

}

TPMC501-SW-42 – VxWorks Device Driver Page 8 of 27

RETURNS

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC501-SW-42 – VxWorks Device Driver Page 9 of 27

2.1.3 tpmc501GetModuleInfo

NAME

tpmc501GetModuleInfo – Get module information data

SYNOPSIS

TPMC501_STATUS tpmc501GetModuleInfo
(

TPMC501_HANDLE hdl,
TPMC501_INFO_BUFFER *pModuleInfo

)

DESCRIPTION

This function reads module information data such as configured module type, location on the PCI bus
and factory programmed correction data.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pModuleInfo

This argument specifies a pointer to the module information buffer.

typedef struct

{

unsigned int Variant;

unsigned int PciBusNo;

unsigned int PciDevNo;

int ADCOffsetCal[4];

int ADCGainCal[4];

} TPMC501_INFO_BUFFER;

Variant

This parameter returns the configured module variant (e.g. 10 for a TPMC501-10).

PciBusNo, PciDevNo

These parameters specifies the PCI location of this module

TPMC501-SW-42 – VxWorks Device Driver Page 10 of 27

ADCOffsetCal[4]

This array returns the factory programmed offset correction value for the different gains.
Array index 0 contains the value for gain 1, index 1 contains the value for gain 2 and so
forth.

ADCGainCal[4]

This array returns the factory programmed gain correction for the different gains. Array
index 0 contains the value for gain 1, index 1 contains the value for gain 2 and so forth.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

TPMC501_INFO_BUFFER ModuleInfo

result = tpmc501GetModuleInfo(hdl, &ModuleInfo);

if (result != TPMC501_OK)

{

 /* handle error */

}

RETURNS

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC501_ERR_INVALID_HANDLE The specified TPMC501_HANDLE is invalid.

TPMC501-SW-42 – VxWorks Device Driver Page 11 of 27

 Device Access Functions

2.2.1 tpmc501SetModelType

NAME

tpmc501SetModelType – configures the TPMC501 board type

SYNOPSIS

TPMC501_STATUS tpmc501SetModelType
(

TPMC501_HANDLE hdl,
int ModuleType

)

DESCRIPTION

This function configures the TPMC501 board type.

This function must be called after initialization of the ADC device, before any other function
accesses the device.

PARAMETERS

hdl

This parameter specifies the device descriptor to the hardware module retrieved by a call to the
corresponding open-function.

ModlueType

This parameter specifies the model type of the TPMC501. The following model types are
supported.

Model Type Description

10 TPMC501-10 --- input range +/- 10V, gains: 1,2,5,10, front panel I/O

11 TPMC501-11 --- input range +/- 10V, gains: 1,2,4,8, front panel I/O

12 TPMC501-12 --- input range 0…10V, gains: 1,2,5,10, front panel I/O

13 TPMC501-13 --- input range 0…10V, gains: 1,2,4,8, front panel I/O

20 TPMC501-20 --- input range +/- 10V, gains: 1,2,5,10, back I/O

21 TPMC501-21 --- input range +/- 10V, gains: 1,2,4,8, back I/O

22 TPMC501-22 --- input range 0…10V, gains: 1,2,5,10, back I/O

23 TPMC501-23 --- input range 0…10V, gains: 1,2,4,8, back I/O

TPMC501-SW-42 – VxWorks Device Driver Page 12 of 27

EXAMPLE

#include “tpmc501.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

/*

** tell the driver, this is a TPMC501-10

*/

result = tpmc501SetModelType(hdl, 10);

if (result != TPMC501_OK)

{

 /* handle error */

}

RETURN VALUE

OK if function succeeds or ERROR.

ERROR CODES

Error Code Description

TPMC501_ERR_INVAL A NULL pointer is referenced for an input value

TPMC501_ERR_INVALID_HANDLE The device handle is invalid

TPMC501_ERR_CONFIG Unsupported or invalid TPMC501 model type specified

TPMC501_ERR_BUSY The module is busy

TPMC501-SW-42 – VxWorks Device Driver Page 13 of 27

2.2.2 tpmc501Read

NAME

tpmc501Read – perform AD conversion and read value

SYNOPSIS

TPMC501_STATUS tpmc501Read
(

TPMC501_HANDLE hdl,
int channel,
int gain,
unsigned int flags,
int *pAdcVal

)

DESCRIPTION

This function starts an AD conversion on a specified input channel and returns the converted value.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

channel

This argument specifies the input channel. Allowed values are 1...32 for single ended interface.
If a differential interface is selected (TPMC501_DIFF set in flags) the values 1…16 are allowed.

gain

This argument specifies the input gain that shall be used. Allowed values are 1, 2, 5, 10 or 1, 2,
4, 8 depending on the module type.

TPMC501-SW-42 – VxWorks Device Driver Page 14 of 27

flags

Set of bit flags that control the AD conversion. The following flags could be OR’ed:

Flag Meaning

TPMC501_DIFF If this flag is set the ADC input works in differential mode otherwise
in single-ended (default).

TPMC501_CORR Perform an offset and gain correction with factory calibration data
stored in the TPMC501 EEPROM.

TPMC501_FAST If this flag is set the fast (polled) mode will be used. The driver will
not use interrupts, instead it will wait in a busy loop until the settling
time (if necessary) and the conversion is finished. Conversions
using this mode will be handled faster, but the processor executes a
busy loop and other tasks will not be handled during the loops.

pAdcVal

This argument points to a buffer where the AD value will be returned.

EXAMPLE

#include “tpmc501api”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

int in_value;

/*

** read AD value from channel 5 with gain = 2

** single endend input, correction enabled, use interrupts

*/

result = tpmc501Read(hdl,

 5,

 2,

 TPMC501_CORR | TPMC501_FAST,

 &in_value);

if (result != TPMC501_OK)

{

 /* handle error */

}

else

{

 printf(“ADC #5: %d\n”, in_value);

}

TPMC501-SW-42 – VxWorks Device Driver Page 15 of 27

RETURN VALUE

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC501_ERR_BUSY The device is busy

TPMC501_ERR_INVAL Invalid parameter specified: invalid channel number,
gain or flag specified

TPMC501_ERR_TIMEOUT The conversion timed out

TPMC501_ERR_CONFIG TPMC501 model type unknown or not configured

TPMC501-SW-42 – VxWorks Device Driver Page 16 of 27

2.2.3 tpmc501StartSequencer

NAME

tpmc501StartSequencer – setup and start sequencer operation

SYNOPSIS

TPMC501_STATUS tpmc501StartSequencer
(

TPMC501_HANDLE hdl,
unsigned int CycleTime,
unsigned int NumOfBufferPages,
unsigned int NumOfChannels,
TPMC501_CHAN_CONF *ChanConf

)

DESCRIPTION

This function sets up and starts the sequencer. The setup specifies the channels to be used in
sequencer mode and how they will be setup, defining gain, correction and input interface. Additional
the sequencer cycle time is defined and depth of the drivers sequencer FIFO will be configured.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

CycleTime

This argument specifies the repeat frequency of the sequencer in 100 μs steps. Each time the
sequencer timer reaches the programmed cycle time a new AD conversion of all active
channels is started. Valid values are in the range from 100 μs to 6.5535 seconds.

NumOfBufferPages

This argument specifies the number of sample blocks in the ring buffer. A sample block contains
the samples of all channels (NumOfChannels) per sequencer cycle.

NumOfChannels

This argument specifies the number of active channels for this job. The maximum number is 32.

TPMC501-SW-42 – VxWorks Device Driver Page 17 of 27

ChanConf

This array of channel configuration structures specifies the configuration of the active channels.
The channel configuration defines the channel number, the gain and some flags. The ordering
of channels in a ring buffer page is the same as defined in this array.

typedef struct

{

unsigned int ChanToUse;

unsigned int gain;

unsigned int flags;

} TPMC501_CHAN_CONF;

ChanToUse

This parameter specifies the input channel number. Valid channels for single-ended
mode are 1…32, for differential mode 1...16.

gain

This Parameter specifies the gain for this channel. Valid gains are 1, 2, 5, 10 for
TPMC501-10/-12/-20/-22 and 1, 2, 4, 8 for TPMC501-11/-13/-21/-23.

flags

Set of bit flags that control the AD conversion. The following flags could be OR’ed:

Flag Meaning

TPMC501_DIFF If this flag is set the ADC input works in differential mode
otherwise in single-ended (default).

TPMC501_CORR Perform an offset and gain correction with factory
calibration data stored in the TPMC501 EEPROM.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

unsigned int CycleTime;

unsigned int NumOfBufferPages;

unsigned int NumOfChannels;

TPMC501_CHAN_CONF ChanConf[TPMC501_MAX_CHAN];

CycleTime = 5000;

NumOfBufferPages = 100;

NumOfChannels = 2;

…

TPMC501-SW-42 – VxWorks Device Driver Page 18 of 27

…

ChanConf[0].ChanToUse = 1;

ChanConf[0].gain = 1;

ChanConf[0].flags = TPMC501_CORR;

ChanConf[1].ChanToUse = 20;

ChanConf[1].gain = 5;

ChanConf[1].flags = TPMC501_CORR;

…

// start the sequencer

result = tpmc501StartSequencer(hdl,

 CycleTime,

 NumOfBufferPages,

 NumOfChannels,

 ChanConf);

if (result != TPMC501_OK)

{

 /* handle error */

}

RETURN VALUE

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC501_ERR_BUSY This error occurs if the sequencer is still running. Please
stop the sequencer before executing this function.

TPMC501_ERR_INVAL At least one of the parameters is invalid.

TPMC501_ERR_CONFIG TPMC501 model type unknown or not configured

TPMC501_ERR_NOMEM Allocating buffer failed

TPMC501-SW-42 – VxWorks Device Driver Page 19 of 27

2.2.4 tpmc501StopSequencer

NAME

tpmc501StopSequencer – Stop the sequencer

SYNOPSIS

TPMC501_STATUS tpmc501StopSequencer
(

TPMC501_HANDLE hdl
)

DESCRIPTION

This function stops execution of the sequencer mode on the specified device.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

result = tpmc501StopSequencer(hdl);

if (result != TPMC501_OK)

{

 /* handle error */

}

TPMC501-SW-42 – VxWorks Device Driver Page 20 of 27

RETURN VALUE

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC501-SW-42 – VxWorks Device Driver Page 21 of 27

2.2.5 tpmc501GetDataBuffer

NAME

tpmc501GetDataBuffer – Get next data block of sequencer samples

SYNOPSIS

TPMC501_STATUS tpmc501GetDataBuffer
(

TPMC501_HANDLE hdl,
unsigned int flags,
int *pData,
unsigned int *pStatus

)

DESCRIPTION

This function returns the next available data block in the ring buffer containing ADC data of configured
sequencer channels.

If specified the function will return immediately, although there is no data available. If the function
should wait for data the function returns immediately if data is already available in FIFO or wait for
sequencer cycle completion. The function timeout, if there is an abnormal delay during wait.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

flags

Set of bit flags that control the sequencer read. The following flags could be OR’ed:

Flag Meaning

TPMC501_NOWAIT If this flag is set the function will return immediately, although
there is no data available.

If the flag is not set, the function will wait until data is available.

TPMC501_FLUSH If this flag is set the sequencer FIFO will be flushed and the
function will wait for new data otherwise the function will read
the next available data set.

TPMC501-SW-42 – VxWorks Device Driver Page 22 of 27

pData

This argument is a pointer to an array of integer items where the converted data of a sequencer
cycle will be filled in. The number of channels and the channel configuration was setup with the
tpmc501StartSequencer function. The used buffer must be at least big enough to receive an
integer value for every enabled sequencer channel.
The first array item [0] belongs to the channel configured by ChanConfig[0], the second array
item [1] belongs to the channel configured by ChanConfig[1] and so forth. Please refer to the
example application for details.

pStatus

This argument is a pointer to a variable which returns the actual sequencer error status. Keep in
mind to check this status before each reading. If status is 0 no error is pending. A set of bits
specifies the error condition.

Value Description

TPMC501_BUF_OVERRUN This bit indicates a ring buffer overrun. The error
occurred if there is no space in ring buffer to write the
new AD data. In this case the new AD values are
dismissed. The sequencer was not stopped.

TPMC501_DATA_OVERFLOW This indicates an overrun in the sequencer data RAM.
The error occurred if the driver is too slow to read the
data in time. The sequencer was stopped after this error
occurred.

TPMC501_TIMER_ERR Sequencer timer error (see also TPMC501 hardware
manual). The sequencer was stopped after this error
occurred.

TPMC501_INST_RAM_ERR Sequencer instruction RAM error (see also TPMC501
hardware manual). The sequencer was stopped after
this error occurred.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

unsigned int seqStatus;

int numOfSeqChannels;

int *pData;

numOfSeqChannels = 2; /* Two channels used in sequenccer mode */

/* allocate sequence input buffer */

pData = malloc(sizeof(int) * numOfSeqChannels);

…

TPMC501-SW-42 – VxWorks Device Driver Page 23 of 27

…

/* read a set of fresh ADC data */

result = tpmc501GetDataBuffer(hdl, TPMC501_FLUSH, &pData, &seqStatus);

if (result != TPMC501_OK)

{

 /* handle error */

}

RETURN VALUE

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC501_ERR_INVALID_HANDLE The specified TPMC501_HANDLE is invalid.

TPMC501_ERR_TIMEOUT There the expected wait time has been exceeded.

TPMC501_ERR_NOT_READY The sequencer is stopped.

TPMC501_ERR_NODATA The function returned without data

TPMC501_ERR_BUSY The device is not configured in sequencer mode

TPMC501-SW-42 – VxWorks Device Driver Page 24 of 27

3 Legacy I/O System Functions
This chapter describes the legacy driver-level interface to the I/O system. The purpose of these
functions is to install the driver in the I/O system, add and initialize devices.

The legacy I/O system functions are only relevant for the legacy TPMC501 driver. For the
VxBus-enabled TPMC501 driver, the driver will be installed automatically in the I/O system and
devices will be created as needed for detected modules.

TPMC501-SW-42 – VxWorks Device Driver Page 25 of 27

 tpmc501PciInit

NAME

tpmc501PciInit() – Generic PCI device initialization

SYNOPSIS

void tpmc501PciInit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC501 PCI spaces (base address register) and to enable the TPMC501
device for access.

The global variable tpmc501Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

> 0 Initialization successful completed. The value of tpmc501Status is equal to the number
of mapped PCI spaces

0 No TPMC501 device found

< 0 Initialization failed. The value of (tpmc501Status & 0xFF) is equal to the number of
mapped spaces until the error occurs.

Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].

Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tpmc501PciInit();

…

tpmc501PciInit();

TPMC501-SW-42 – VxWorks Device Driver Page 26 of 27

4 Appendix

 Enable RTP-Support

Using TPMC501 devices tunneled from Real Time Processes (RTPs) is implemented. For this the
“TEWS TPMC501 IOCTL command validation” must be enabled in system configuration.

The API source file “tpmc501api.c” must be added to the RTP-Project directory and built together with
the RTP-application.

The definition of TVXB_RTP_CONTEXT must be added to the project, which is used to eliminate
kernel headers, values and functions from the used driver files.

Find more detailed information in “TEWS TECHNOLOGIES VxWorks Device Drivers - Installation
Guide”.

All legacy functions, functions for version compatibility and debugging functions are not
usable from RTPs.

 Debugging and Diagnostic

The TPMC501 device driver provides a function and debug statements to display versatile information
of the driver installation and status on the debugging console.

If the VxBus driver is used, the TPMC501 show routine is included in the driver by default and can be
called from the VxWorks shell. If this function is not needed or program space is rare the function can
be removed from the code by un-defining the macro INCLUDE_TPMC501_SHOW in tpmc501drv.c

The tpmc501Show function (only if VxBus is used) displays detailed information about probed
modules, assignment of devices respective device names to probed TPMC501 modules and device
statistics.

If TPMC501 modules were probed but no devices were created it may helpful to enable debugging
code inside the driver code by defining the macro TPMC501_DEBUG in tpmc501drv.c.

In contrast to VxBus TPMC501 devices, legacy TPMC501 devices must be created “manually”.
This will be done with the first call to the tpmc501Open API function.

-> tpmc501Show

Probed Modules:

 [0] TPMC501: Bus=4, Dev=1, DevId=0x9050, VenId=0x10b5, Init=OK, vxDev=0x478878

Associated Devices:

 [0] TPMC501: /tpmc501/0

Correction Data:

 /tpmc501/0:

 gain/offset

 Gain = 1: 5/-8

 Gain = 2: 3/-2

TPMC501-SW-42 – VxWorks Device Driver Page 27 of 27

 Gain = 4/5: 11/-5

 Gain = 8/10: 7/-1

Device Statistics:

 /tpmc501/0:

 open count = 0

 interrupt count = 3

	1 Introduction
	2 API Documentation
	2.1 General Functions
	2.1.1 tpmc501Open
	2.1.2 tpmc501Close
	2.1.3 tpmc501GetModuleInfo

	2.2 Device Access Functions
	2.2.1 tpmc501SetModelType
	2.2.2 tpmc501Read
	2.2.3 tpmc501StartSequencer
	2.2.4 tpmc501StopSequencer
	2.2.5 tpmc501GetDataBuffer

	3 Legacy I/O System Functions
	3.1 tpmc501PciInit

	4 Appendix
	4.1 Enable RTP-Support
	4.2 Debugging and Diagnostic

