The Embedded I/O Company

TPMCS550-SW-42

VxWorks Device Driver
8/4 Channel 12 Bit D/A

Version 3.1.x

User Manual

Issue 3.1.0
September 2025

TEWS Technologies GmbH
Eggerstedter Weg 14, 25421 Pinneberg, Germany
Phone: +49 (0) 4101 4058 0

e-mail: info@tews.com www.tews.com

mailto:info@tews.com
http://www.tews.com/

TPMC550-SW-42

VxWorks Device Driver
8/4 Channel 12 Bit D/A

Supported Modules:

This document contains information, which is
proprietary to TEWS Technologies GmbH. Any
reproduction without written permission is forbidden.

TEWS Technologies GmbH has made any effort to

TPMCS550 ensure that this manual is accurate and complete.
However TEWS Technologies GmbH reserves the
right to change the product described in this
document at any time without notice.

TEWS Technologies GmbH is not liable for any
damage arising out of the application or use of the
device described herein.
©1999-2025 by TEWS Technologies GmbH
Issue Description Date
1.0 First Issue May 2001
11 General Revision November 2003
111 File-list changed August 8, 2005
2.0.0 API description added, VxBus support added, Legacy-driver: /0 February 2, 2011

3.0.0
3.1.0

interface updated, file list modified, General revision
API revised and documented, Basic I/O functions removed

Address of TEWS Technologies changed, VxWorks 7 support added,
new installation guide, Support for Legacy VxWorks (before V 6.9) is
EOL, descriptions removed

TPMC550-SW-42 — VxWorks Device Driver

August 28, 2012
September 17, 2025

Page 2 of 30

Table of Contents

1 INTRODUGCTION. ..ttt ettt et e et e e et e e aa e eean s 4
2 APl DOCUMENTATION ..o e e e e e aa e eaans 5
2.1 GENETAl FUNCHIONS ..ottt ittt ettt ettt ettt e sttt e e s n b e e e s nb b e e e s nbbe e e e anbbeeeenntaeeeeaneeas 5

P2 S R (o] 0 01210 @ o 1= o TR PP PP PP U PPPUPPPUPPPPRPPINE 5

2.1.2 APMCSS0CIOSE ... ittt ettt e ettt e e e e e e bbb e et e e e e e e e abeae e e e e e e e e anbaaaeaaaeeaaanne 7

2.1.3 tpMC550GEtMOAUIEINTO........eeiiiiiie e e e e e e e e e e e e e e e e e nnne 9

2.2 DAC OULPUL FUNCLIONS 1iiiiiiiie ettt e e e ettt e e e sttt e e e e bt e e e et e e e e anbbeeesanbaeeeenntees 11

2.2.1 tPMCSS0DACWIILE. ... eeeiiie ettt e ettt et e e e e e sttt e e e e e e s nbb e eeaaeeeesnnbnaeeaaeeeaannnes 11

2.2.2 tPMCS50DACWIIEEMUILI ...t s e e e e e e s e e e e e e e snnrneeeeeeesennnnes 13

b IS T= o [U 1= a Tt =Y g U T AT Y o K= RSO 15

2.3.1 tPMCES0SEUSEIUD. . eeiiiieiiiiitie ittt e e e s e 15

2.3.2 IPMCSES0SEOSTANeeiiiiiiiiiitie e e e e e e e 18

P TR T 1 o] 0 1 o110 S 1= 15 (e o PRSPPI 20

PG R 1 o] 14Tt 1 o 0 Y=Y LAY (= PR 22

2.3.5 tPMCSE50SEUFIUSH ... e e e e e e 25

2.3.6 IPMCOS0SEOSTAIUS .. ettt et e et e e e e e e e aee 27

3 AP PENDIDX e et en 30
TN P o] (= = I YUY o o o) SRS 30

72 D T=T o 10 e Yo T a Yo =T a Ko B B T=To [Lo 1= £ o SRS 30

TPMC550-SW-42 — VxWorks Device Driver Page 3 of 30

1 Introduction

The TPMC550-SW-42 VxWorks device driver software allows the operation of the supported PMC
conforming to the VxWorks 1/O system specification.

The TPMC550-SW-42 release contains driver sources for the VxBus-enabled (GEN1 and GENZ2) driver
model and supports later VxWorks 6.9.x and VxWorks 7 releases, including VxWorks 64-bit and SMP
systems.

The driver provides an application programming interface (API) for easy access to all functionalities.

The driver invoke synchronization methods to prevent simultaneous requests by multiple tasks from
interfering with each other.

The TPMC550-SW-42 device driver supports the following features:

Set DAC output value

Configure, start, and stop DAC-sequencer

Write data for sequencer cycle

Use of data correction for simple conversion and in sequencer mode

Use of latched writes for synchronous output

Read TPMC550 configuration (number of channels and uni-/bipolar output)

YVVVVYVYY

The TPMC550-SW-42 supports the modules listed below:

TPMC550-x0 8 channel 12-bit D/A (PMC)
TPMC550-x1 4 channel 12-bit D/A (PMC)

To get more information about the features and use of supported devices it is recommended to read the
manuals listed below.

TPMC550 User Manual
TEWS Technologies VxWorks Device Drivers - Installation Guide

TPMC550-SW-42 — VxWorks Device Driver Page 4 of 30

2 APl Documentation

2.1 General Functions

2.1.1 tpmc5500pen

NAME

tpmc5500pen — opens a device.

SYNOPSIS

TPMC550_HANDLE tpmc5500pen
(

)

char *deviceName

DESCRIPTION

Before 1/0 can be performed to a device, a device handle must be opened by a call to this function.

PARAMETERS

deviceName

This parameter points to a null-terminated string that specifies the name of the device. The first
TPMC550 device is named “/tpmc550/0”, the second device is named “/tpmc550/1” and so on.

EXAMPLE

#include “tpmc550api.h”’
TPMC550_HANDLE hdl ;

/* open the specified device */
hdl = tpmc5500pen(*“/tpmc550/07);
if (hdl == NULL)

{

/* handle open error */

}

TPMC550-SW-42 — VxWorks Device Driver Page 5 of 30

RETURNS

A device handle, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC550-SW-42 — VxWorks Device Driver Page 6 of 30

2.1.2 tpmc550Close

NAME

tpmc550CIose — closes a device.

SYNOPSIS

TPMC550_STATUS tpmc550Close
(

)

TPMC550_HANDLE hdl

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc550api.h”’

TPMC550_HANDLE hdl ;
TPMC550_STATUS result;

/* close the device */
result = tpmc550Close(hdl);
if (result !'= TPMC550_O0K)

{

/* handle close error */

}

TPMC550-SW-42 — VxWorks Device Driver Page 7 of 30

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned

by the function.

ERROR CODES

Error Code

Description

TPMC550_ERR_INVALID_HANDLE

The specified device handle is invalid

TPMC550-SW-42 — VxWorks Device Driver

Page 8 of 30

2.1.3 tpmc550GetModulelnfo

NAME

tpmc550GetModulelnfo — Get module information

SYNOPSIS
TPMC550_STATUS tpmc550GetModulelnfo
(
TPMC550_HANDLE hdl,
int *NumChan,
int bipolar[TPMC550_MAX_CHAN],
int OffsCorr[TPMC550_MAX_CHAN],
int GainCorr[TPMC550_MAX_CHAN]
)
DESCRIPTION

This function reads module information data from the specified device.

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

NumChan
This argument is a pointer to an int variable where the number of available DAC channels is
returned.

bipolar

This argument is a pointer to an int array where the configured voltage range of each DAC channel
is returned as boolean value. The array element bipolar[0] contains the range stetting for DAC
channel 1, bipolar[1] for DAC channel 2 and so forth. If the corresponding value is TRUE then the
voltage range of the channel is configured to +/- 10V output (bipolar); otherwise it is configured to
0...10V output voltage range.

OffsCorr

This argument is a pointer to an int array where the factory programmed offset correction data is
returned. OffsCorr[0] contains correction data for DAC channel 1, OffsCorr[1] for DAC channel 2
and so forth.

GainCorr

This argument is a pointer to an int array where the factory programmed gain correction data are
returned. GainCorr[0] contains correction data for DAC channel 1, GainCorr[1] for DAC channel
2 and so forth.

TPMC550-SW-42 — VxWorks Device Driver Page 9 of 30

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

int NumChan;

int bipolar[TPMC550 MAX_CHAN];
int OffsCorr[TPMC550_ MAX_CHAN];
int GainCorr[TPMC550_ MAX CHAN];

/* Get module information data */
result = tpmc550GetModulelnfo(hdl, &NumChan, bipolar, OffsCorr, GainCorr);

if (result !'= TPMC550_O0OK)

{

/* handle error */
}
RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function

ERROR CODES

Error Code Description
TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550-SW-42 — VxWorks Device Driver Page 10 of 30

2.2 DAC Output Functions

2.2.1 tpmc550DacWrite

NAME

tpmc550DacWrite — write D/A value to specified channel

SYNOPSIS

TPMC550_STATUS tpmc550DacWrite

(
TPMC550 HANDLE hdl,
int channel,
unsigned int flags,
short value

)

DESCRIPTION

This function writes a new value to a specific channel and starts D/A conversion immediately in
transparent mode

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

channel

This argument specifies the DAC channel which shall be updated. Possible values are 1 up to the
number of available DAC channels of the specific module.

flags
This argument specifies a set of bit flags that control the D/A conversion:
Value Description
TPMC550_CORR Perform an offset and gain correction with factory

calibration data stored in the TPMC550 EEPROM.

value

This argument specifies the new 12-bit D/A value. Valid data range depends on the voltage range
of the specified channel (0...4095 for 0...10V voltage range and -2048...2047 for +/-10V voltage
range).

TPMC550-SW-42 — VxWorks Device Driver Page 11 of 30

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

/* Set DAC value */
result = tpmch550DacWrite(hdl, 1, TPMC550_CORR, 1234);
if (result !'= TPMC550_0OK)

{

/* handle error */
}
RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550 ERR_RANGE Invalid channel number

TPMC550_ERR_TIMEOUT Timeout during D/A conversion

TPMC550_ERR_BUSY This error occurs if the sequencer is still running.
Please stop the sequencer before executing this
function.

TPMC550-SW-42 — VxWorks Device Driver Page 12 of 30

2.2.2 tpmc550DacWriteMulti

NAME

tpmc550DacWriteMulti — write D/A value to multiple channels

SYNOPSIS
TPMC550_STATUS tpmc550DacWriteMulti
(
TPMC550_HANDLE hdl,
unsigned int ChannelMask,
unsigned int flags,
short values[TPMC550_MAX_CHAN]
)
DESCRIPTION

This function writes new values to specified channels and starts D/A conversion immediately
(transparent mode) or simultaneously (latched mode).

PARAMETERS

hdl
This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

ChannelMask

This argument selects DAC channels which shall be updated. A set (1) bit specifies that the
corresponding channel shall be updated. Bit O corresponds to the first DAC channel, bit 1
corresponds to the second DAC channel and so on.

flags
This argument specifies a set of bit flags that control the D/A conversion:
Value Description
TPMC550_CORR Perform an offset and gain correction with factory
calibration data stored in the TPMC550 EEPROM for all
selected channels.
TPMC550_SIMCONV Start conversion of selected channels in latched mode and
update analog outputs simultaneously.
values

This array contains the new 12-bit D/A values. Valid data range depends on the voltage range of
the specified channel (0...4095 for 0...10V voltage range and -2048...2047 for +/-10V voltage
range).

Array index 0 corresponds to the first DAC channel, array index 1 corresponds to the second DAC
channel and so on. Only channels selected for update (ChannelMask) will be modified.

TPMC550-SW-42 — VxWorks Device Driver Page 13 of 30

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

unsigned int ChannelMask;
unsigned int flags;
short values[TPMC550_ MAX_ CHAN];

/* Update channel 1, 4 and 8 simultaneously with corrected D/A values */
ChannelMask = (1<<0) | (1<<3) | (1<<7);
flags = TPMC550 _CORR | TPMC550_SIMCONV;

value[0] = 111; /* channel 1 */
value[3] = 444; /* channel 4 */
value[7] = 888; /* channel 8 */

result = tpmc550DacWriteMulti(hdl, ChannelMask, flags, values);

if (result != TPMC550_OK)

{

/* handle error */
}
RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550 ERR_RANGE Invalid channel number

TPMC550_ERR_TIMEOUT Timeout during D/A conversion

TPMC550_ERR_BUSY This error occurs if the sequencer is still running.
Please stop the sequencer before executing this
function.

TPMC550-SW-42 — VxWorks Device Driver Page 14 of 30

2.3 Sequencer Functions

2.3.1 tpmc550SeqSetup

NAME

tpmc550SeqSetup — Setup sequencer facility

SYNOPSIS

TPMC550_STATUS tpmc550SeqSetup

(
TPMC550_HANDLE hdl,
int CycleTime,
int NumActiveChannels,
int NumBufTuples,
int ChannelAllocation[TPMC550_MAX_CHAN],
unsigned int flags

)

DESCRIPTION

This function configures the sequencer facility and allocates memory for the sequencer software ring
buffer. The behaviour of the sequencer facility is controlled by a set of bit flags which are described
below.

Basically the sequencer will perform a D/A conversion on active channels in a deterministic time period
controlled by a cycle timer or the duration of the conversion itself. To be sure that D/A data will be
available for the next cycle just in-time, data for the sequencer will be provided by a configurable ring
buffer. The ring buffer can be asynchronously filled by the application program.

The sequencer facility provides two operating modes. In loop mode (TPMC550_LOOP) the buffer will
be filled completely with new data (e.g. wave form). The contents of the buffer will be output continuously
in a loop. In normal mode (TPMC550_LOOP is not set) the application program must provide new data
for every cycle. If the buffer is empty then the sequencer will stop and it holds the last output value until
new data arrives.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

CycleTime

This argument specifies the sequencer cycle time in steps of 100 ps. This argument is only
relevant if the flag TPMC550 TIMERMODE is set.

TPMC550-SW-42 — VxWorks Device Driver Page 15 of 30

NumActiveChannels

This argument specifies the number of active channels. Valid range is 1 up to the number of

available channels (4 or 8).

NumBufTuples

This argument specifies the size of the sequencer software ring buffer. In this case size is not the
number of bytes to allocate but rather the number of tuples (data for all active channels per cycle).

ChannelAllocation

This argument specifies the channel number of active channels and their enumeration inside a
tuple. The function tpmc550SeqWrite awaits new data for active channels in this order. The first
array element contains the channel number (1...n) of the first active channel. The second array
element the channel number of the second active channel and so forth. Unused array elements

can be left undefined.

flags

This argument specifies a set of bit flags that control the sequencer operation:

Value
TPMC550 TIMERMODE

TPMC550_LOOP

TPMC550_CORR

TPMC550_SIMCONV

TPMC550-SW-42 — VxWorks Device Driver

Description

If set, the cycle of D/A conversions will be controlled by
the sequencer timer in steps of 100 microseconds;
otherwise the sequencer will run in continuous mode as
fast as possible (based on the conversion time).

If this flag is set (loop mode) the ring buffer never
becomes empty. Once completely filled the sequencer will
continuously get data out of the buffer for the next
conversion.

If this flag is not set (normal mode) and the buffer
becomes empty then the sequencer will stop and it holds
the last output value until new data arrives.

Perform an offset and gain correction with factory
calibration data stored in the TPMC550 EEPROM for all
selected channels.

Start conversion of active channels in latched mode and
update analog outputs simultaneously.

Page 16 of 30

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;

TPMC550_STATUS result;

int ChannelAllocation[TPMC550 MAX CHAN];
unsigned int flags;

/* Setup the sequencer with 2 active channels (1 and 4) in timer mode */
/* with 1 ms cycle time. The sequencer buffer shall store data tuples */
/* for up to 100 cycles. */

ChannelAllocation[0] = 1;

ChannelAllocation[1] = 4;

flags = TPMC550 TIMERMODE | TPMC550 CORR | TPMC550_SIMCONV;

result = tpmc550SeqSetup(hdl, 10, 2, 100, ChannelAllocation, flags);

if (result !'= TPMC550_O0OK)

{

/* handle error */
}
RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function

ERROR CODES

Error Code Description

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550_ERR_RANGE Invalid channel number or invalid number of
channels.

TPMC550_ERR_NOMEM Unable to allocate memory for the ring buffer.

TPMC550_ERR_BUSY This error occurs if the sequencer is still running.
Please stop the sequencer before executing this
function

TPMC550-SW-42 — VxWorks Device Driver Page 17 of 30

2.3.2 tpmc550SeqStart

NAME

tpmc550SeqStart — start sequencer facility

SYNOPSIS
TPMC550_STATUS tpmc550SeqStart
(
TPMC550_HANDLE hdl
)
DESCRIPTION

This function starts the sequencer facility. Before calling this function the sequencer must be setup with
tpmc550SeqSetup und the ring buffer must be filled with tpmc550SeqWrite.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

/* start the sequencer */
result = tpmc550SeqStart(hdl);

if (result !'= TPMC550_OK)
{

/* handle error */

}

TPMC550-SW-42 — VxWorks Device Driver Page 18 of 30

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550_ERR_NOT_READY The sequencer facility was not properly configured.
Execute the function tpmc550SeqSetup first.

TPMC550 ERR_NODATA No data is available in the ring buffer to start the

sequencer facility. Use the function tpmc550SeqWrite to
write at least one data tuple before starting the
sequencer.

TPMC550-SW-42 — VxWorks Device Driver Page 19 of 30

2.3.3 tpmc550SeqStop

NAME

tpmc550SeqStop — stop the sequencer facility

SYNOPSIS

TPMC550_STATUS tpmc550SeqStop
(

)

TPMC550_HANDLE hdl

DESCRIPTION

This function stops the sequencer facility. All allocated resources (e.g. ring buffer memory) will be freed.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc550api.h”’

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

/* stop the sequencer */
result = tpmc550SeqStop(hdl);

if (result !'= TPMC550 0OK)
{

/* handle error */

}

TPMC550-SW-42 — VxWorks Device Driver Page 20 of 30

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550-SW-42 — VxWorks Device Driver Page 21 of 30

2.3.4 tpmc550SeqWrite

NAME

tpmc550SeqWrite — write new sequencer data

SYNOPSIS
TPMC550_STATUS tpmc550SeqWrite
(
TPMC550 HANDLE hdl,
int size,
short *values,
int *WrittenSize
)
DESCRIPTION

This function writes new data to the sequencers data buffer. The provided data buffer must always
contain new data for all active channels (tuple). The number of tuples per write must be at least one up
to “unlimited”. This function will always write as many tuples as possible. If the buffer becomes full the
function will return immediately with the error TPMC550_ERR_BUF_FULL. The number of written bytes
will be returned in a variable pointed to by WrittenSize.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

size
This argument specifies the size (in bytes) of the data buffer to write.

values
This argument is a pointer to an array of short variables that contains data for all active channels
for at least one sequencer cycle (tuple). Despite of the declaration as simple short pointer this
array is treated as a two-dimensional array with variable dimensions. The rows of the array
represent the number of tuples and the columns the number of active channels. A declaration of
this array will look like this: dataftuples][channels].

WrittenSize

This argument is a pointer to an int variable where the number of written bytes is returned. In case
of the error TPMC550_ERR_BUF_FULL this value can be used to adjust the buffer start pointer
for subsequent writes.

TPMC550-SW-42 — VxWorks Device Driver Page 22 of 30

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

int WrittenSize;
short ForOneCycle[4];
short ForHundredCycles[100][4];

/* Fill new data into the data buffers */

ForHundredCycles[O][0] = 1; /* first cycle, first channel */
ForHundredCycles[O0][1] = 2; /* First cycle, second channel */
ForHundredCycles[1][0] = 11; /* second cycle, first channel */

ForHundredCycles[99][3] = 1234; /* 100th cycle, last channel */
/* Write new data for 100 cycles and 4 active channels (100 * 4 values) */

result = tpmc550SeqWrite(
hdl,
sizeof(ForHundredCycles),
(short*)ForHundredCycles,

&WrittenSize
):
if (result !'= TPMC550_O0K)
{
/* handle error */
if (result == TPMC550_ERR_BUF_FULL)
{
/* send remaining data later */
¥
}

/* Write new data for 1 cycle and 4 active channels (4 values) */

result = tpmc550SeqWrite(
hdl,
sizeof(ForOneCycle),
ForOneCycle,
&WrittenSize

)

TPMC550-SW-42 — VxWorks Device Driver Page 23 of 30

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550_ERR_NOT_READY The sequencer is not running

TPMC550 ERR_BUF_TOO_ SMALL The buffer does not contain enough data for all active
channels.

TPMC550 ERR_NOMEM The passed data buffer does not fit into the

configured sequencer buffer. This error is only
relevant in loop mode (TPMC550 LOOP)

TPMC550_ERR_BUF_FULL The sequencer buffer is full. Not all data was written
to the buffer. Use the contents of WrittenSize to
adjust the data pointer to write the remaining data
tuples.

TPMC550-SW-42 — VxWorks Device Driver Page 24 of 30

2.3.5 tpmc550SeqFlush

NAME

tpmc550SegFlush — flush the sequencer ring buffer

SYNOPSIS
TPMC550_STATUS tpmc550SeqFlush
(
TPMC550_HANDLE hdl
)
DESCRIPTION

This function flushes the ring buffer of the sequencer facility. The analog output of active channels will
hold the last converted data until new data is written with the tpmc550SeqWrite function.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc550api.h”

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

/* flush the sequencer ring buffer */
result = tpmc550SeqFlush(hdl);

if (result !'= TPMC550_OK)
{

/* handle error */

}

TPMC550-SW-42 — VxWorks Device Driver Page 25 of 30

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550-SW-42 — VxWorks Device Driver Page 26 of 30

2.3.6 tpmc550SeqStatus

NAME

tpmc550SeqStatus — get sequencer status and statistic information

hdl,
*QOperatingState,
*status,
*CycleCount,
*UnderflowCount,
*EmptyCount

SYNOPSIS
TPMC550_STATUS tpmc550SeqStatus
(
TPMC550 HANDLE
int
int
int
int
int
)
DESCRIPTION

This function reads sequencer status and statistic information from the specified device.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OperatingState

This argument is a pointer to an int variable where the current operating state of the sequencer is
returned. Possible operating states are:

Value

TPMC550_STOPPED

TPMC550_READY

TPMC550_RUNNING

Description
The sequencer is stopped.

The sequencer facility is configured and ready to
start.

The sequencer is running.

TPMC550-SW-42 — VxWorks Device Driver Page 27 of 30

status

This argument is a pointer to an int variable where current error/status of the sequencer is
returned. After calling this function the error/status code will be set to TPMC550_SEQ_OK.
Possible error/status codes are:

Value Description
TPMC550_SEQ_OK Sequencer is working fine. No errors detected.
TPMC550 SEQ_UNDERFLOW The sequencer hardware has detected a data

underflow condition. The driver was not able to provide
new data within a sequencer timer cycle.

TPMC550_SEQ_NODATA No data available in the ring buffer for output.

CycleCount
This argument is a pointer to an int variable where the total number of sequencer cycles since
sequencer start is returned.

UnderflowCount
This argument is a pointer to an int variable where the total number of sequencer underflows
since sequencer start is returned.

EmptyCount

This argument is a pointer to an int variable where the total number of empty buffer cycles since
sequencer start is returned.

EXAMPLE

#include “tpmc550api.h”’

TPMC550_HANDLE hdl;
TPMC550_STATUS result;

int OperatingState;
int status;

int CycleCount;

int UnderflowCount;
int EmptyCount;

/* Read sequencer status and statistic information */
result = tpmc550SeqStatus(hdl, &OperatingState, &status, &CycleCount,
&UnderflowCount, &EmptyCount);

if (result !'= TPMC550_O0OK)
{

/* handle error */

}

TPMC550-SW-42 — VxWorks Device Driver Page 28 of 30

RETURNS

On success, TPMC550_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC550_ERR_INVALID_HANDLE The specified TPMC550_HANDLE is invalid.

TPMC550-SW-42 — VxWorks Device Driver Page 29 of 30

3 Appendix

3.1 Enable RTP-Support

Using TPMC550 devices tunneled from Real Time Processes (RTPs) is implemented. For this the
“TEWS TPMC550 IOCTL command validation” must be enabled in system configuration.

The API source file “tpmc550api.c” must be added to the RTP-Project directory and built together with
the RTP-application.

The definition of TVXB_RTP_CONTEXT must be added to the project, which is used to eliminate kernel
headers, values and functions from the used driver files.

Find more detailed information in “TEWS Technologies VxWorks Device Drivers - Installation Guide”.

Debugging functions are not usable from RTPs.

3.2 Debugging and Diagnostic

The TPMC550 device driver provides a function and debug statements to display versatile information
of the driver installation and status on the debugging console.

The TPMC550 show routine is included in the VxBus driver by default and can be called from the
VxWorks shell. If this function is not needed or program space is rare the function can be removed from
the code by un-defining the macro INCLUDE_TPMC550_SHOW in tpmc550drv.c

The tpmc550Show function displays detailed information about probed modules, assignment of devices
respective device names to probed TPMC550 modules and device statistics.

If TPMC550 modules were probed but no devices were created it may helpful to enable debugging code
inside the driver code by defining the macro TPMC550_DEBUG in tpmc501drv.c.

-> tpmc550Show
Probed Modules:
[0] TPMC550: Bus=4, Dev=1, Devld=0x9050, Venld=0x10b5, Init=0K, vxDev=0x5380

Associated Devices:
[0] TPMC550: /tpmc550/0

Device Statistics:
/tpmc550/0:
Open Count =0
Sequencer Cycle Count = 0
Channels Output Range and Correction-Data (Offset/Gain):

#1 [-10V... +10V] - -1/5
#2 [-10V... +10V] - 0/3
#3 [-10V... +10V] - -2/2
#4 [-10V... +10V] - -3/8
#5 [OV... +10V] - -9/9
#6 [OV... +10v] - -2/13
#7 [OV... +10V] - -5/7
#8 [OV... +10V] - -3/9

TPMC550-SW-42 — VxWorks Device Driver Page 30 of 30

	1 Introduction
	2 API Documentation
	2.1 General Functions
	2.1.1 tpmc550Open
	2.1.2 tpmc550Close
	2.1.3 tpmc550GetModuleInfo

	2.2 DAC Output Functions
	2.2.1 tpmc550DacWrite
	2.2.2 tpmc550DacWriteMulti

	2.3 Sequencer Functions
	2.3.1 tpmc550SeqSetup
	2.3.2 tpmc550SeqStart
	2.3.3 tpmc550SeqStop
	2.3.4 tpmc550SeqWrite
	2.3.5 tpmc550SeqFlush
	2.3.6 tpmc550SeqStatus

	3 Appendix
	3.1 Enable RTP-Support
	3.2 Debugging and Diagnostic

