
The Embedded I/O Company

TPMC550-S
Linux Device D

8/4 Channels of Isolated

Version 1.1.x

User Manu

Issue 1.1.1

January 2022

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-82
river

 12 bit D/A

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC550-SW-82 – Linux Device Driver Page 2 of 23

TPMC550-SW-82

Linux Device Driver

8/4 Channels of Isolated 12 bit D/A

Supported Modules:
TPMC550

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2006-2022 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue December 8, 2006

1.0.1 File list modified November 11, 2008

1.0.2 Address TEWS LLS removed September 22, 2010

1.1.0 Parameters: 32-bit value values changed from long to int

COPYING-File added to file-list

December 10, 2018

1.1.1 Layout corrections January 14, 2022

TPMC550-SW-82 – Linux Device Driver Page 3 of 23

Table of Contents

1 INTRODUCTION ... 4

2 INSTALLATION .. 5

Build and install the Device Driver .. 5

Uninstall the Device Driver .. 6

Install Device Driver into the running Kernel ... 6

Remove Device Driver from the running Kernel .. 7

Change Major Device Number ... 7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8

open .. 8

close ... 10

ioctl ... 11

3.3.1 TPMC550_IOCSWRITE ... 13
3.3.2 TPMC550_IOCGREADPARAM ... 15
3.3.3 TPMC550_IOCSSTARTSEQ ... 17
3.3.4 TPMC550_IOCSWRITESEQ ... 19
3.3.5 TPMC550_IOCSSTOPSEQ ... 21

4 DIAGNOSTIC .. 22

TPMC550-SW-82 – Linux Device Driver Page 4 of 23

1 Introduction
The TPMC550-SW-82 Linux device driver allows the operation of the TPMC550 PMC conforming to
the Linux I/O system specification. This includes a device-independent basic I/O interface with open(),
close() and ioctl() functions.

The TPMC550-SW-82 device driver supports the following features:

 write a new output value to a specified channel
 start and setup the output sequencer
 update sequencer output values
 stop the output sequencer
 read the module configuration

The TPMC550-SW-82 device driver supports the modules listed below:

TPMC550 8/4 Channels of Isolated 12 bit D/A (PMC)

To get more information about the features and use of TPMC550 devices it is recommended to read
the manuals listed below.

TPMC550 User Manual

TPMC550-SW-82 – Linux Device Driver Page 5 of 23

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC550-SW-82’:

TPMC550-SW-82-1.1.1.pdf This manual in PDF format
TPMC550-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
Release.txt Release information
ChangeLog.txt Release history

The GZIP compressed archive TPMC550-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘./tpmc550/’:

tpmc550.c Driver source code
tpmc550def.h Driver private include file
tpmc550.h Driver public include file for application program
Makefile Device driver make file
makenode Script to create device nodes on the file system
include/config.h Driver independent library header file
include/tpxxxhwdep.c Low level hardware access functions source file
include/tpxxxhwdep.h Access functions header file
include/tpmodule.c Driver independent library
include/tpmodule.h Driver independent library header file
example/tpmc550exa.c Example application
example/Makefile Example application make file
COPYING Copy of the GNU Public License (GPL)

In order to perform an installation, extract all files of the archive TPMC550-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TPMC550-SW-82-SRC.tar.gz’ will extract the files
into the local directory.

 Login as root and change to the target directory

 Copy tpmc550.h to /usr/include

 Build and install the Device Driver

 Login as root

 Change to the target directory

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

To update the device driver’s module dependencies, enter:

depmod -a

TPMC550-SW-82 – Linux Device Driver Page 6 of 23

 Uninstall the Device Driver

 Login as root

 Change to the target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

 Update kernel module dependency description file

depmod -a

 Install Device Driver into the running Kernel

 To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tpmc550drv

 After the first build or if you are using dynamic major device allocation it’s necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip running
the makenode script. Instead of creating device nodes from the script the driver itself takes
creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TPMC550 module found. The first
module of the first TPMC550 module can be accessed with device node /dev/tpmc550_0, the second
module with device node /dev/tpmc550_1, the third TPMC550 module with device node
/dev/tpmc550_2 and so on.

The assignment of device nodes to physical TPMC550 modules depends on the search order of the
PCI bus driver.

TPMC550-SW-82 – Linux Device Driver Page 7 of 23

 Remove Device Driver from the running Kernel

 To remove the device driver from the running kernel login as root and execute the following
command:

modprobe –r tpmc550drv

If your kernel has enabled devfs or sysfs (udev), all /dev/tpmc550_x nodes will be automatically
removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tpmc550drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

 Change Major Device Number

This paragraph is only for Linux kernels without DEVFS installed. The TPMC550 device driver uses
dynamic allocation of major device numbers per default. If this isn’t suitable for the application it is
possible to define a major number for the driver.

To change the major number edit the file tpmc550def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TPMC550_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TPMC550_MAJOR 122

Be sure that the desired major number is not used by other drivers. Please check /proc/devices
to see which numbers are free.

Keep in mind that it is necessary to create new device nodes if the major number for the
TPMC550 driver has changed and the makenode script is not used.

TPMC550-SW-82 – Linux Device Driver Page 8 of 23

3 Device Input/Output Functions
This chapter describes the interface to the device driver I/O system.

 open

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C).

See also the GNU C Library documentation for more information about the open function and open
flags.

EXAMPLE

int fd;

fd = open(“/dev/tpmc550_0”, O_RDWR);

if (fd < 0)

{

 /* handle open error conditions */

}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TPMC550-SW-82 – Linux Device Driver Page 9 of 23

ERRORS

Error Code Description

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC550-SW-82 – Linux Device Driver Page 10 of 23

 close

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0)

{

 /* handle close error conditions */

}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

Error Code Description

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC550-SW-82 – Linux Device Driver Page 11 of 23

 ioctl

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>
#include <tpmc550.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tpmc550.h:

Value Meaning

TPMC550_IOCSWRITE Write output value

TPMC550_IOCGREADPARAM Read the module configuration

TPMC550_IOCSSTARTSEQ Start sequencer mode

TPMC550_IOCSWRITESEQ Update sequencer output data

TPMC550_IOCSSTOPSEQ Stop sequencer mode

See behind for more detailed information on each control code.

To use these TPMC550 specific control codes the header file tpmc550.h must be included in
the application

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

TPMC550-SW-82 – Linux Device Driver Page 12 of 23

ERRORS

Error Code Description

EINVAL Invalid argument. This error code is returned if the requested ioctl
function is unknown. Please check the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TPMC550 device driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TPMC550-SW-82 – Linux Device Driver Page 13 of 23

3.3.1 TPMC550_IOCSWRITE

NAME

TPMC550_IOCSWRITE – Write output value

DESCRIPTION

This ioctl function attempts to write the output value of the specified TPMC550 D/A channel.

A pointer to the caller’s output buffer (TPMC550_WRITEBUF) is passed by the parameter argp to the
driver.

typedef struct

{

unsigned short channel;

unsigned short flags;

int value;

} TPMC550_WRITEBUF, *PTPMC550_WRITEBUF;

channel

This value specifies the DAC channel that will be used. Allowed values are 1 to 8 for
TPMC551-10/-20 and 1 to 4 for TPMC551-11/-21.

flags

This value is an ORed value of the flags shown in the following table.

Name Meaning

TPMC550_FL_CORR If this flag is set, the driver will correct the DAC output
value with the factory programmed correction data.

If this flag is not set, the output value will not be corrected.

TPMC550_FL_LATCHED It this flag is set the data will be loaded into the DAC, but
the conversion will not be started, until the
TPMC550_FL_SIMCONV flag is set.

TPMC550_FL_SIMCONV This flag starts a simultaneous conversion for all channels.
This flag is necessary to start a conversion in latched
mode.

value

This parameter specifies the DAC output value (12bit LSB aligned). The value must be between
0 and 4095 for 0V...+10V mode and between –2048 and +2047 for –10V…+10V mode.

TPMC550-SW-82 – Linux Device Driver Page 14 of 23

EXAMPLE

#include <tpmc550.h>

int fd;

int result;

TPMC550_WRITEBUF DACBuf;

/***

 Write channel 5 with corrected data

**/

DACBuf.channel = 5;

DACBuf.value = 0x0123;

DACBuf.flags = TPMC550_FL_CORR;

result = ioctl(fd, TPMC550_IOCSWRITE, &DACBuf);

if (result < 0)

{

 /* handle error */

 printf("\nFailed --> Error = %d\n", errno);

}

ERRORS

Error Code Description

EFAULT Invalid pointer to the data buffer. Error copying data from user space.

ECHRNG Invalid channel specified.

EBUSY The sequencer mode is active on the specified device

ETIME The settling or conversion time exceeds the supposed range.

TPMC550-SW-82 – Linux Device Driver Page 15 of 23

3.3.2 TPMC550_IOCGREADPARAM

NAME

TPMC550_IOCGREADPARAM – Read the module configuration

DESCRIPTION

This ioctl function returns the module parameters. This includes the factory programmed correction
data, number of channels and the voltage range selection.

A pointer to the callers parameter buffer (TPMC550_PARABUF) is passed by the parameter argp to
the driver.

typedef struct

{

int NumChan;

int biPol_1_4;

int biPol_5_8;

signed char OffsCorr[8];

signed char GainCorr[8];

} TPMC550_PARABUF, *PTPMC550_PARABUF;

NumChan

This parameter returns the number of DAC channels supported by the module.

biPol_1_4

This parameter returns TRUE, if the channels 1 to 4 are configured for –10V...+10V mode, if
FALSE is returned, the channels are configured for 0V...+10V mode.

biPol_5_8

This parameter returns TRUE, if the channels 5 to 8 are configured for –10V...+10V mode, if
FALSE is returned, the channels are configured for 0V...+10V mode.

OffsCorr

This array returns the factory programmed offset correction data set, which is used if the
TPMC550_FL_CORR flag is set. The index of the array specifies the channel number, 0 selects
channel 1, 1 selects channel 2 and so on.

GainCorr

This array returns the factory programmed gain correction data set, which is used if the
TPMC550_FL_CORR flag is set. The index of the array specifies the channel number, 0 selects
channel 1, 1 selects channel 2 and so on.

TPMC550-SW-82 – Linux Device Driver Page 16 of 23

EXAMPLE

#include <tpmc550.h>

int fd;

int result;

int x;

TP551_PARABUF ParamBuf;

/*

** Read module configuration

*/

result = ioctl(fd, IOCGREADPARAM, &ParamBuf);

if (result >= 0)

{

 for (x = 0; ParamBuf.NumChan < 8; x++)

 {

 printf("Offset Error [%d] = %d \n", x + 1, ParamBuf.OffsCorr[x]);

 printf("Gain Error [%d] = %d \n", x + 1, ParamBuf.GainCorr[x]);

 }

} else {

 /* handle error */

 printf("\nFailed --> Error = %d\n", errno);

}

ERRORS

Error Code Description

EFAULT Invalid pointer to the parameter buffer. Please check the argument argp.

TPMC550-SW-82 – Linux Device Driver Page 17 of 23

3.3.3 TPMC550_IOCSSTARTSEQ

NAME

TPMC550_IOCSSTARTSEQ – Setup and start the sequencer, enter sequencer mode

DESCRIPTION

This ioctl function sets up the TPMC550 to work in sequencer mode. The cycle time and the channel
configuration are set up.

A pointer to the callers parameter buffer (TPMC550_STARTSEQBUF) is passed by the parameter
argp to the driver.

typedef struct

{

unsigned short channels;

unsigned short cycleTime;

unsigned short flags;

} TPMC550_STARTSEQBUF, *PTPMC550_STARTSEQBUF;

channels

This parameter specifies which channel will be used in sequencer mode. Setting bit 0 will
enable channel 1, setting bit 1 will enable channel 2 and so on.

cycleTime

This parameter specifies the cycle time that will be used. The value will be copied into the
sequencer timer register. The value has a resolution of 100µs steps. If the flag
TPMC550_FL_CONTINUOUS is set the parameter will be ignored (see below).

flags

This parameter is an ORed value of the following described flags.

Name Meaning

TPMC550_FL_LATCHED If this flag is set, the driver will output the data in latched
mode, the output of all channels will be visible at the same
time. Otherwise the data will be used in transparent mode.

TPMC550_FL_CONTINUOUS The sequencer will work in continuous mode, data will be
written as fast as possible to the output.

TPMC550-SW-82 – Linux Device Driver Page 18 of 23

EXAMPLE

#include <tpmc550.h>

int fd;

int result;

TPMC550_STARTSEQBUF SeqStartBuf;

/***

 Start sequencer with a cycle time of 1 sec

 Enable following channels:

 Channel 1

 Channel 6

 Use latched mode

**/

SeqStartBuf.cycleTime = 10000; /* 10000 * 100µs */

SeqStartBuf.channels = (1 << 0) | (1 << 5); /* Enable channel */

SeqStartBuf.flags = TPMC550_FL_LATCHED;

result = ioctl(fd, TPMC550_IOCSSTARTSEQ, &SeqStartBuf);

if (result < 0)

{

 /* handle error */

 printf("\nFailed --> Error = %d\n", errno);

}

ERRORS

Error Code Description

EFAULT Invalid pointer to the parameter buffer. Please check the argument argp.

TPMC550-SW-82 – Linux Device Driver Page 19 of 23

3.3.4 TPMC550_IOCSWRITESEQ

NAME

TPMC550_IOCSWRITESEQ – Write DAC data into sequencer FIFO-buffer

DESCRIPTION

This ioctl function writes data into the sequencer FIFO. The data will be used by the interrupt function
in sequencer mode to update the DAC output values.

A pointer to the callers parameter buffer (TPMC550_WRITESEQBUF) is passed by the parameter
argp to the driver.

typedef struct

{

unsigned short channels;

unsigned short correction;

unsigned short values[8];

unsigned int stat;

} TPMC550_WRITESEQBUF, *PTPMC550_WRITESEQBUF;

channels

This parameter specifies which channel shall update output data. Setting bit 0 will update
channel 1, setting bit 1 will update channel 2 and so on. Channels which are activated and not
specified to be updated will hold their value.

correction

This parameter specifies which channels shall use the factory stored correction data. Setting bit
0 will enable data correction for channel 1, setting bit 1 will enable data correction for channel 2
and so on.

values

This array specifies the new output values. The array index specifies the channel number the
data assigned to. Index 0 for channel 1, index 1 for channel 2 and so on. The values must be
between 0 and 4095 for 0V..+10V mode and between –2048 and +2047 for –10V..+10V mode.
Only the values for channels specified for update will be used.

stat

This parameter returns the sequencer status. The status returns number of cycles which had
not been used for new data output, because there has been no output data available in the
FIFO. And the status can signal that an output error has occurred. This will happen if the
software is not able to handle a cycle before the next cycle starts. The stat argument is split in
this way:

bits 27 .. 0 number of lost cycles

bit 30 (TPMC550_E_ERROR) sequencer error has occurred

TPMC550-SW-82 – Linux Device Driver Page 20 of 23

EXAMPLE

#include <tpmc550.h>

int fd;

int result;

TPMC550_WRITESEQBUF SeqWriteBuf;

/***

 Update Sequencer data

 Enable following channels:

 Channel 1

 Channel 6

 Use correction for channel 6

**/

SeqWriteBuf.channels = (1 << 0) | (1 << 5);

SeqWriteBuf.correction = (1 << 5);

SeqWriteBuf.values[0] = 0x0123;

SeqWriteBuf.values[5] = 0x0000;

result = ioctl(fd, TPMC550_IOCSWRITESEQ, &SeqWriteBuf);

if (result < 0)

{

 /* handle error */

 printf("\nFailed --> Error = %d\n", errno);

}

TPMC550-SW-82 – Linux Device Driver Page 21 of 23

3.3.5 TPMC550_IOCSSTOPSEQ

NAME

TPMC550_IOCSSTOPSEQ – Stop Sequencer Mode

DESCRIPTION

This ioctl function stops the sequencer mode.

The optional argument can be omitted for this ioctl function.

EXAMPLE

#include <tpmc550.h>

int fd;

int result;

/*

** stop sequencer mode

*/

result = ioctl(fd, TPMC550_IOCSSTOPSEQ);

if (result < 0)

{

 /* handle error */

 printf("\nFailed --> Error = %d\n", errno);

}

ERRORS

No function dependent errors.

SEE ALSO

ioctl man pages

TPMC550-SW-82 – Linux Device Driver Page 22 of 23

4 Diagnostic
If the TPMC550 does not work properly it is helpful to get some status information from the driver
respective kernel. To get debug output from the driver enable the following symbols in ‘tpmc550.c’ by
replacing “#undef” with “#define”:

#define DEBUG_TPMC550

The log output will be available in system log, which can be shown by different distribution dependent
command, e.g. tail –f /var/log/messages, or journalctl –f

journalctl -f

Dez 06 15:38:47 linux.local kernel: TEWS TECHNOLOGIES - TPMC550 8 Channel
12 Bit DAC version <Driver Version> (<Release Date>)

Dez 06 15:38:47 linux.local kernel:

 Moduletype TPMC550

Dez 06 15:38:47 linux.local kernel: Ch1-4: 0-10V

Dez 06 15:38:47 linux.local kernel: Ch5-8: 0-10V

Dez 06 15:38:47 linux.local kernel: CH1 - O:-1 - G:2

Dez 06 15:38:47 linux.local kernel: CH2 - O:-3 - G:4

Dez 06 15:38:47 linux.local kernel: CH3 - O:1 - G:3

Dez 06 15:38:47 linux.local kernel: CH4 - O:0 - G:-1

Dez 06 15:38:47 linux.local kernel: CH5 - O:-1 - G:1

Dez 06 15:38:47 linux.local kernel: CH6 - O:-2 - G:5

Dez 06 15:38:47 linux.local kernel: CH7 - O:1 - G:4

Dez 06 15:38:47 linux.local kernel: CH8 - O:-1 - G:5

The Linux /proc file system provides information about kernel, resources, drivers, devices and so on.
The following screen dumps displays information of a correct running TPMC550 device driver (see
also the proc man pages).

cat /proc/devices

Character devices:

 1 mem

 2 pty/m%d

 3 pty/s%d

 4 tts/%d

 5 cua/%d

 10 misc

128 ptm

136 pts/%d

162 raw

254 tpmc550drv

TPMC550-SW-82 – Linux Device Driver Page 23 of 23

cat /proc/ioports

00000000-00bfffff : PCI host bridge

 00bfeee0-00bfeeff : PLX Technology, Inc. PCI <-> IOBus Bridge

 00bfeee0-00bfeeff : TPMC550

 00bfef00-00bfef7f : PLX Technology, Inc. PCI <-> IOBus Bridge

 00bfefc0-00bfefff : Intel Corp. 82559ER

 00bfefc0-00bfefff : eepro100

 00bff000-00bfffff : Tundra Semiconductor Corp. CA91C042 [Universe]

ffe80000-ffe80007 : serial(auto)

ffe80008-ffe8000f : serial(auto)

cat /proc/interrupts

 CPU0 CPU1 CPU2 CPU3

 0: 111 0 0 0 IO-APIC 2-edge timer

 1: 0 0 14 0 IO-APIC 1-edge i8042

…

 15: 0 0 0 0 IO-APIC 15-edge ata_piix

 16: 0 0 0 0 IO-APIC 16-fasteoi uhci_hcd:usb5, TPMC550

 18: 0 0 0 0 IO-APIC 18-fasteoi uhci_hcd:usb4

…

	1 Introduction
	2 Installation
	2.1 Build and install the Device Driver
	2.2 Uninstall the Device Driver
	2.3 Install Device Driver into the running Kernel
	2.4 Remove Device Driver from the running Kernel
	2.5 Change Major Device Number

	3 Device Input/Output Functions
	3.1 open
	3.2 close
	3.3 ioctl
	3.3.1 TPMC550_IOCSWRITE
	3.3.2 TPMC550_IOCGREADPARAM
	3.3.3 TPMC550_IOCSSTARTSEQ
	3.3.4 TPMC550_IOCSWRITESEQ
	3.3.5 TPMC550_IOCSSTOPSEQ

	4 Diagnostic

