The Embedded I/O Company

TPMC550-SW-82

Linux Device Driver
8/4 Channels of Isolated 12 bhit D/A

Version 1.1.x

User Manual

Issue 1.1.2
September 2025

TEWS Technologies GmbH
Eggerstedter Weg 14, 25421 Pinneberg, Germany
Phone: +49 (0) 4101 4058 0

e-mail: info@tews.com www.tews.com

mailto:info@tews.com
http://www.tews.com/

TPMC550-SW-82
Linux Device Driver
8/4 Channels of Isolated 12 bit D/A

Supported Modules:

This document contains information, which is
proprietary to TEWS Technologies GmbH. Any
reproduction without written permission is forbidden.

TEWS Technologies GmbH has made any effort to
ensure that this manual is accurate and complete.

TPMC550 ;

However TEWS Technologies GmbH reserves the
right to change the product described in this
document at any time without notice.
TEWS Technologies GmbH is not liable for any
damage arising out of the application or use of the
device described herein.
©2006-2025 by TEWS Technologies GmbH

Issue Description Date

1.0.0 December 8, 2006

1.0.1 File list modified November 11, 2008

1.0.2 Address TEWS LLS removed September 22, 2010

1.1.0 Parameters: 32-hit value values changed from long to int December 10, 2018

COPYING-File added to file-list
111 Layout corrections January 14, 2022
1.1.2 Address of TEWS Technologies modified September 29, 2025

TPMC550-SW-82 — Linux Device Driver

Page 2 of 23

Table of Contents

1 INTRODUGCTION. ..ttt ettt et e et e e e et e e e et e e e aaeeeean s 4
2 INS T ALLATION .. e et e et e et e et e et e et e et e e e eennns 5
2.1 Build and install the DEVICE DIIVENccouiiiiiiiiiiiieee e 5

2.2 Uninstall the DEVICE DIIVELocviiiiiiiieeeeeeee e 6

2.3 Install Device Driver into the running Kernel ... 6

2.4 Remove Device Driver from the running Kernel........cccoooiiiiiiiii e 7

2.5 Change Major DEVICE NUMDETcciiiiiiiiiiii ettt sttt e e 7

3 DEVICE INPUT/OUTPUT FUNCTIONSoiiiii it ee e e s 8
b Tt (o o1 o PP R PPP PP PPPPP 8

32 ClOSE e 10

B T T o o I 11
3.3.1 TPMCS550_IOCSWRITE ...oeiiiiiiiiiee ittt ettt ettt e e e st e e s snbaee e e snbeeeessnreeeeene 13

3.3.2 TPMC550_IOCGREADPARAM ..ottt ettt ettt e et e e staae e et e e e snaaaaae e 15

3.3.3 TPMC550 IOCSSTARTSEQ ...uuiiiiiiiiieiiiiiieesitiete e sttee e e sttee e s staeeaestaeeessntaeeeesntaeeesssnnaeenns 17

3.34 TPMC550 _IOCSWRITESEQooeiiiiiiieiiiiiieeiiiieieesitteeeesstaeeesstaeessstaeeassssseeessnsaeessssnneesens 19

3.3.5 TPMC550 IOCSSTOPSEQoeiiiiiitiiieiiiiieeiitiieeesstteeeesstteeesstaeeasstaeeessstaeessstaeeesssnneeeanns 21

4 DIAGN O ST .. e e e et e et e et e e et e et e e e e eaaernnaes 22

TPMC550-SW-82 — Linux Device Driver Page 3 of 23

1 Introduction

The TPMC550-SW-82 Linux device driver allows the operation of the TPMC550 PMC conforming to
the Linux 1/0O system specification. This includes a device-independent basic I/O interface with open(),
close() and ioctl() functions.

The TPMC550-SW-82 device driver supports the following features:

write a new output value to a specified channel
start and setup the output sequencer

update sequencer output values

stop the output sequencer

read the module configuration

YVVVVY

The TPMC550-SW-82 device driver supports the modules listed below:

TPMC550 8/4 Channels of Isolated 12 bit D/A (PMC)
To get more information about the features and use of TPMC550 devices it is recommended to read
the manuals listed below.

TPMC550 User Manual

TPMC550-SW-82 — Linux Device Driver Page 4 of 23

2 Installation

Following files are located on the distribution media:

Directory path ‘TPMC550-SW-82":

TPMC550-SW-82-1.1.1.pdf This manual in PDF format
TPMC550-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
Release.txt Release information

ChangelLog.txt Release history

The GZIP compressed archive TPMC550-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path *./tpmc550/:

tpmc550.c Driver source code

tpmc550def.h Driver private include file

tpmc550.h Driver public include file for application program
Makefile Device driver make file

makenode Script to create device nodes on the file system
include/config.h Driver independent library header file
include/tpxxxhwdep.c Low level hardware access functions source file
include/tpxxxhwdep.h Access functions header file

include/tpmodule.c Driver independent library

include/tpmodule.h Driver independent library header file
example/tpmc550exa.c Example application

example/Makefile Example application make file

COPYING Copy of the GNU Public License (GPL)

In order to perform an installation, extract all files of the archive TPMC550-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TPMC550-SW-82-SRC.tar.gz’ will extract the files
into the local directory.

e Login as root and change to the target directory

e Copy tpmc550.h to /usr/include

2.1 Build and install the Device Driver

e Login as root
e Change to the target directory

e To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

To update the device driver's module dependencies, enter:

depmod -a

TPMC550-SW-82 — Linux Device Driver Page 5 of 23

2.2 Uninstall the Device Driver

Login as root

Change to the target directory

To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

Update kernel module dependency description file

depmod -a

2.3 Install Device Driver into the running Kernel

e To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tpmc550drv

o After the first build or if you are using dynamic major device allocation it's necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip running
the makenode script. Instead of creating device nodes from the script the driver itself takes
creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TPMC550 module found. The first
module of the first TPMC550 module can be accessed with device node /dev/tpmc550_0, the second
module with device node /dev/tpmc550_ 1, the third TPMC550 module with device node
/dev/tpmc550_2 and so on.

The assignment of device nodes to physical TPMC550 modules depends on the search order of the
PCI bus driver.

TPMC550-SW-82 — Linux Device Driver Page 6 of 23

2.4 Remove Device Driver from the running Kernel

e To remove the device driver from the running kernel login as root and execute the following
command:

modprobe —r tpmc550drv

If your kernel has enabled devfs or sysfs (udev), all /dev/itpmc550_x nodes will be automatically
removed from your file system after this.

Be sure that the driver isn’'t opened by any application program. If opened you will get the
response “tpmc550drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe —r again.

2.5 Change Major Device Number

This paragraph is only for Linux kernels without DEVFS installed. The TPMC550 device driver uses
dynamic allocation of major device numbers per default. If this isn’t suitable for the application it is
possible to define a major number for the driver.

To change the major number edit the file tpmc550def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TPMC550_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TPMC550_MAJOR 122

Be sure that the desired major number is not used by other drivers. Please check /proc/devices
to see which numbers are free.

Keep in mind that it is necessary to create new device nodes if the major number for the
TPMC550 driver has changed and the makenode script is not used.

TPMC550-SW-82 — Linux Device Driver Page 7 of 23

3 Device Input/Output Functions

This chapter describes the interface to the device driver I/O system.

3.1 open

NAME

open() - open a file descriptor

SYNOPSIS
#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C).

See also the GNU C Library documentation for more information about the open function and open
flags.

EXAMPLE

int fd;

fd = open(*/dev/tpmc550_0", O_RDWR);
if (fd < 0)
{

/* handle open error conditions */

}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of —1 is returned. The global variable errno contains the detailed error code.

TPMC550-SW-82 — Linux Device Driver Page 8 of 23

ERRORS

Error Code Description
E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description — Low-
Level Input/Output.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TPMC550-SW-82 — Linux Device Driver Page 9 of 23

3.2 close

NAME

close() — close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) = 0)

{

/* handle close error conditions */
}
RETURNS

The normal return value from close is 0. In the case of an error, a value of —1 is returned. The global
variable errno contains the detailed error code.

ERRORS
Error Code Description
E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description — Low-
Level Input/Output.

SEE ALSO

GNU C Library description — Low-Level Input/Output

TPMC550-SW-82 — Linux Device Driver Page 10 of 23

3.3 ioctl

NAME

ioctl() — device control functions

SYNOPSIS

#include <sysl/ioctl.h>
#include <tpmc550.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tpmc550.h:

Value Meaning
TPMC550_IOCSWRITE Write output value

TPMC550 _IOCGREADPARAM Read the module configuration
TPMC550_IOCSSTARTSEQ Start sequencer mode
TPMC550_IOCSWRITESEQ Update sequencer output data
TPMC550_IOCSSTOPSEQ Stop sequencer mode

See behind for more detailed information on each control code.

To use these TPMC550 specific control codes the header file tpmc550.h must be included in
the application

RETURNS

On success, zero is returned. In the case of an error, a value of —1 is returned. The global variable
errno contains the detailed error code.

TPMC550-SW-82 — Linux Device Driver Page 11 of 23

ERRORS

Error Code Description

EINVAL Invalid argument. This error code is returned if the requested ioctl
function is unknown. Please check the argument request.

Other function dependant error codes will be described for each ioctl code separately. Note, the
TPMC550 device driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TPMC550-SW-82 — Linux Device Driver Page 12 of 23

3.3.1 TPMC550_|IOCSWRITE

NAME

TPMC550_IOCSWRITE — Write output value

DESCRIPTION

This ioctl function attempts to write the output value of the specified TPMC550 D/A channel.
A pointer to the caller’'s output buffer (TPMC550 _WRITEBUF) is passed by the parameter argp to the

driver.

typedef struct

{
unsigned short channel;
unsigned short flags;
int value;

} TPMC550_WRITEBUF, *PTPMC550_WRITEBUF;

channel

This value specifies the DAC channel that will be used. Allowed values are 1 to 8 for
TPMC551-10/-20 and 1 to 4 for TPMC551-11/-21.

flags
This value is an ORed value of the flags shown in the following table.
Name Meaning
TPMC550 FL CORR If this flag is set, the driver will correct the DAC output
value with the factory programmed correction data.
If this flag is not set, the output value will not be corrected.
TPMC550 FL LATCHED It this flag is set the data will be loaded into the DAC, but
the conversion will not be started, until the
TPMC550_FL_SIMCONV flag is set.
TPMC550_FL_SIMCONV This flag starts a simultaneous conversion for all channels.
This flag is necessary to start a conversion in latched
mode.
value

This parameter specifies the DAC output value (12bit LSB aligned). The value must be between
0 and 4095 for OV...+10V mode and between —2048 and +2047 for —10V...+10V mode.

TPMC550-SW-82 — Linux Device Driver Page 13 of 23

EXAMPLE
#include <tpmc550.h>
int fd;

int result;
TPMC550 WRITEBUF DACBuf;

/***

Write channel 5 with corrected data

/
DACBuf.channel = 5;

DACBuf.value 0x0123;

DACBuf.flags TPMC550_FL_CORR;

result = iocthl(fd, TPMC550 IOCSWRITE, &DACBuf);
it (result < 0)

{
/* handle error */
printf(C"\nFailed --> Error = %d\n', errno);
}
ERRORS
Error Code Description
EFAULT Invalid pointer to the data buffer. Error copying data from user space.
ECHRNG Invalid channel specified.
EBUSY The sequencer mode is active on the specified device
ETIME The settling or conversion time exceeds the supposed range.

TPMC550-SW-82 — Linux Device Driver Page 14 of 23

3.3.2 TPMC550_|IOCGREADPARAM

NAME

TPMC550_IOCGREADPARAM — Read the module configuration

DESCRIPTION

This ioctl function returns the module parameters. This includes the factory programmed correction
data, number of channels and the voltage range selection.

A pointer to the callers parameter buffer (TPMC550 PARABUF) is passed by the parameter argp to

the driver.

typedef struct

{
int NumChan;
int biPol_1 4;
int biPol 5 8;
signed char OffsCorr[8];
signed char GainCorr[8];

} TPMC550_PARABUF, *PTPMC550_PARABUF;

NumChan
This parameter returns the number of DAC channels supported by the module.

biPol_1_4

This parameter returns TRUE, if the channels 1 to 4 are configured for —10V...+10V mode, if
FALSE is returned, the channels are configured for OV...+10V mode.

biPol_5_8
This parameter returns TRUE, if the channels 5 to 8 are configured for —10V...+10V mode, if
FALSE is returned, the channels are configured for OV...+10V mode.

OffsCorr

This array returns the factory programmed offset correction data set, which is used if the
TPMC550_FL_CORR flag is set. The index of the array specifies the channel number, 0 selects
channel 1, 1 selects channel 2 and so on.

GainCorr

This array returns the factory programmed gain correction data set, which is used if the
TPMC550_FL_CORR flag is set. The index of the array specifies the channel number, 0 selects
channel 1, 1 selects channel 2 and so on.

TPMC550-SW-82 — Linux Device Driver Page 15 of 23

EXAMPLE

#include <tpmc550.h>

int fd;
int result;
int X;

TP551 PARABUF ParamBuf;

/*

** Read module configuration

*/

result = ioctl(fd, 10CGREADPARAM, &ParamBuf);
if (result >= 0)

{
for (x = 0; ParamBuf_NumChan < 8; x++)
{
printf("'Offset Error [%d] = %d \n", x + 1, ParamBuf.OffsCorr[x]);
printf('Gain Error [%d] = %d \n", x + 1, ParamBuf.GainCorr[x]);
}
} else {
/* handle error */
printfF(C"\nFailed --> Error = %d\n", errno);
}
ERRORS
Error Code Description
EFAULT Invalid pointer to the parameter buffer. Please check the argument argp.

TPMC550-SW-82 — Linux Device Driver Page 16 of 23

3.3.3 TPMC550_|IOCSSTARTSEQ

NAME

TPMC550_ IOCSSTARTSEQ — Setup and start the sequencer, enter sequencer mode

DESCRIPTION

This ioctl function sets up the TPMC550 to work in sequencer mode. The cycle time and the channel
configuration are set up.

A pointer to the callers parameter buffer (TPMC550_STARTSEQBUF) is passed by the parameter
argp to the driver.

typedef struct

{
unsigned short channels;
unsigned short cycleTime;
unsigned short flags;

} TPMC550_STARTSEQBUF, *PTPMC550_STARTSEQBUF;

channels

This parameter specifies which channel will be used in sequencer mode. Setting bit 0 will
enable channel 1, setting bit 1 will enable channel 2 and so on.

cycleTime

This parameter specifies the cycle time that will be used. The value will be copied into the
sequencer timer register. The value has a resolution of 100us steps. If the flag
TPMC550_FL_CONTINUOUS is set the parameter will be ignored (see below).

flags
This parameter is an ORed value of the following described flags.
Name Meaning
TPMC550 FL LATCHED If this flag is set, the driver will output the data in latched

mode, the output of all channels will be visible at the same
time. Otherwise the data will be used in transparent mode.

TPMC550_FL_CONTINUOUS | The sequencer will work in continuous mode, data will be
written as fast as possible to the output.

TPMC550-SW-82 — Linux Device Driver Page 17 of 23

EXAMPLE

#include <tpmc550.h>

int fd;
int result;
TPMC550 STARTSEQBUF SeqStartBuf;

/***

Start sequencer with a cycle time of 1 sec
Enable following channels:
Channel 1
Channel 6
Use latched mode
**/
SeqgStartBuf.cycleTime = 10000; /* 10000 * 100ps */
SeqgStartBuf.channels = (1 << 0) | (1 << 5); /* Enable channel */
SeqgStartBuf.flags = TPMC550_FL_LATCHED;
result = ioctl(fd, TPMC550 IOCSSTARTSEQ, &SeqStartBuf);
if (result < 0)

{
/* handle error */
printfF(C"\nFailed --> Error = %d\n", errno);
}
ERRORS
Error Code Description
EFAULT Invalid pointer to the parameter buffer. Please check the argument argp.

TPMC550-SW-82 — Linux Device Driver Page 18 of 23

3.3.4 TPMC550_|IOCSWRITESEQ

NAME

TPMC550_IOCSWRITESEQ — Write DAC data into sequencer FIFO-buffer

DESCRIPTION

This ioctl function writes data into the sequencer FIFO. The data will be used by the interrupt function
in sequencer mode to update the DAC output values.

A pointer to the callers parameter buffer (TPMC550 WRITESEQBUF) is passed by the parameter
argp to the driver.

typedef struct

{
unsigned short channels;
unsigned short correction;
unsigned short values|[8];
unsigned int stat;

} TPMC550_WRITESEQBUF, *PTPMC550_WRITESEQBUF;

channels

This parameter specifies which channel shall update output data. Setting bit 0 will update
channel 1, setting bit 1 will update channel 2 and so on. Channels which are activated and not
specified to be updated will hold their value.

correction

This parameter specifies which channels shall use the factory stored correction data. Setting bit
0 will enable data correction for channel 1, setting bit 1 will enable data correction for channel 2
and so on.

values

This array specifies the new output values. The array index specifies the channel number the
data assigned to. Index 0 for channel 1, index 1 for channel 2 and so on. The values must be
between 0 and 4095 for 0V..+10V mode and between —2048 and +2047 for —10V..+10V mode.
Only the values for channels specified for update will be used.

stat

This parameter returns the sequencer status. The status returns number of cycles which had
not been used for new data output, because there has been no output data available in the
FIFO. And the status can signal that an output error has occurred. This will happen if the
software is not able to handle a cycle before the next cycle starts. The stat argument is split in
this way:

bits 27 .. 0 number of lost cycles

bit 30 (TPMC550_E_ERROR) | sequencer error has occurred

TPMC550-SW-82 — Linux Device Driver Page 19 of 23

EXAMPLE

#include <tpmc550.h>

int fd;
int result;
TPMC550 WRITESEQBUF SegWriteBufT;

/***

Update Sequencer data

Enable following channels:
Channel 1
Channel 6

Use correction for channel 6

SegWriteBuf.channels 1 <<0)] (@ << b);

SegWriteBuf.correction = (1 << 5);
SegWriteBuf.values[0] = 0x0123;
SegWriteBuf.values[5] = 0x0000;

result = ioctl(fd, TPMC550 IOCSWRITESEQ, &SeqWriteBuf);
if (result < 0)
{

/* handle error */
printfF(C"\nFailed --> Error = %d\n", errno);

TPMC550-SW-82 — Linux Device Driver Page 20 of 23

3.3.5 TPMC550_IOCSSTOPSEQ

NAME

TPMC550_IOCSSTOPSEQ — Stop Sequencer Mode

DESCRIPTION

This ioctl function stops the sequencer mode.

The optional argument can be omitted for this ioctl function.

EXAMPLE

#include <tpmc550.h>

int fd;
int result;

/*

** stop sequencer mode

*/

result = ioctl(fd, TPMC550 I0CSSTOPSEQ);
it (result < 0)

{

/* handle error */

printf("\nFailed --> Error = %d\n', errno);
}
ERRORS

No function dependent errors.

SEE ALSO

ioctl man pages

TPMC550-SW-82 — Linux Device Driver Page 21 of 23

4 Diagnostic

If the TPMC550 does not work properly it is helpful to get some status information from the driver
respective kernel. To get debug output from the driver enable the following symbols in ‘tpmc550.c’ by
replacing “#undef” with “#define”:

#define DEBUG_TPMC550

The log output will be available in system log, which can be shown by different distribution dependent
command, e.g. tail —f /var/log/messages, or journalctl —F

journalctl -f

15:38:47 linux.local kernel:
12 Bit DAC version <Driver Version>

15:38:47 linux.

Dez

Dez

Dez
Dez
Dez
Dez
Dez
Dez
Dez
Dez
Dez
Dez

06

06

06
06
06
06
06
06
06
06
06
06

15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

38:
38:
38:
38:
38:
38:
38:
38:
38:
38:

47
47
47
47
47
47
47
47
47
47

linux.
linux.
linux.
linux.
linux.
linux.
linux.
linux.
linux.
linux.

local

local
local
local
local
local
local
local
local
local
local

kernel:

kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:
kernel:

TEWS Technologies - TPMC550 8 Channel
(<Release Date>)

Chl-
Ch5-

CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8

4:
8:

O OO O OO oo

Moduletype TPMC550

0-10V
0-10V

-1 - G:2
-3 - G:4
1 - G:3
0 - G:-1
-1 - G:1
-2 - G:5
1 - G:4
-1 - G:5

The Linux /proc file system provides information about kernel, resources, drivers, devices and so on.
The following screen dumps displays information of a correct running TPMC550 device driver (see
also the proc man pages).

cat /proc/devices
Character devices:

1
2
3
4
5

10
128
136

162
254

mem

pty/m%d
pty/s%d

tts/%d
cua/%d

misc

ptm
pts/%d
raw

tpmc550drv

TPMC550-SW-82 — Linux Device Driver

Page 22 of 23

cat /proc/ioports
00000000-00bFfFFFf - PCI host bridge
0Obfeee0-00bfeeff : PLX Technology, Inc. PCl <-> 10Bus Bridge
OObfeee0-00bfeeff : TPMC550
OObfef00-00bfef7f : PLX Technology, Inc. PCl <-> I0Bus Bridge
00bfefcO-00bfefff - Intel Corp. 82559ER
00bfefcO-00bfefff : eeprolO0
OObfFO00-00bFFFFFf - Tundra Semiconductor Corp. CA91C042 [Universe]
fFe80000-Ffe80007 : serial(auto)
ffe80008-Ffe8000f : serial(auto)

cat /proc/interrupts
CPUO CPU1 CPU2 CPU3

0: 111 0 0 0 10-APIC 2-edge timer

1: 0 0 14 0 10-APIC 1-edge 18042

15: 0 0 0 0 10-APIC 15-edge ata _piix

16: 0 0 0 0 10-APIC 16-fasteoi uhci_hcd:usb5, TPMC550
18: 0 0 0 0 10-APIC 18-fasteoi uhci_hcd:usb4

TPMC550-SW-82 — Linux Device Driver Page 23 of 23

	1 Introduction
	2 Installation
	2.1 Build and install the Device Driver
	2.2 Uninstall the Device Driver
	2.3 Install Device Driver into the running Kernel
	2.4 Remove Device Driver from the running Kernel
	2.5 Change Major Device Number

	3 Device Input/Output Functions
	3.1 open
	3.2 close
	3.3 ioctl
	3.3.1 TPMC550_IOCSWRITE
	3.3.2 TPMC550_IOCGREADPARAM
	3.3.3 TPMC550_IOCSSTARTSEQ
	3.3.4 TPMC550_IOCSWRITESEQ
	3.3.5 TPMC550_IOCSSTOPSEQ

	4 Diagnostic

