
The Embedded I/O Company

TPMC551-S
VxWorks Device

8/4 Channel 16 B

Version 4.0.x

User Manu

Issue 4.0.0

May 2013

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-42
Driver

it D/A

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC551-SW-42 – VxWorks Device Driver Page 2 of 38

TPMC551-SW-42

VxWorks Device Driver

8/4 Channel 16 Bit D/A

Supported Modules:
TPMC551

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

1999-2013 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue July 15, 1999

1.1 Support for Intel x86 based targets June 19, 2000

1.2 General Revision November 28, 2003

1.3.0 File list changed (Release.txt added) August 10, 2005

2.0.0 New Parameter Interfaces tpmc551Drv(), tpmc551DevCreate()

File list changed (ChangeLog.txt added)

March 7, 2007

3.0.0 API description added, VxBus support added, file list modified

I/O interface modified, address TEWS LLC removed

February 1, 2011

4.0.0 API Interface reviewed, General Revision of the Manual May 27, 2013

TPMC551-SW-42 – VxWorks Device Driver Page 3 of 38

Table of Contents

1 INTRODUCTION... 4

2 INSTALLATION.. 5

Legacy vs. VxBus Driver ..62.1

VxBus Driver Installation ...72.2

2.2.1 Direct BSP Builds ...8
Legacy Driver Installation ..92.3

2.3.1 Include Device Driver in VxWorks Projects ..9
2.3.2 Special Installation for Intel x86 based Targets..9
2.3.3 BSP dependent Adjustments..10
System Resource Requirement...112.4

3 API DOCUMENTATION ... 12

General Functions...123.1

3.1.1 tpmc551Open ...12
3.1.2 tpmc551Close...14
3.1.3 tpmc551GetModuleInfo ..16
DAC Output Functions ...183.2

3.2.1 tpmc551DacWrite ...18
3.2.2 tpmc551DacWriteMulti..20
Sequencer Functions..223.3

3.3.1 tpmc551SeqSetup ..22
3.3.2 tpmc551SeqStart ..25
3.3.3 tpmc551SeqStop ..27
3.3.4 tpmc551SeqWrite ...29
3.3.5 tpmc551SeqFlush...32
3.3.6 tpmc551SeqStatus ...34

4 LEGACY I/O SYSTEM FUNCTIONS.. 37

tpmc551PciInit...374.1

5 DEBUGGING AND DIAGNOSTIC.. 38

TPMC551-SW-42 – VxWorks Device Driver Page 4 of 38

1 Introduction
The TPMC551-SW-42 VxWorks device driver software allows the operation of the supported PMC
conforming to the VxWorks I/O system specification.

The TPMC551-SW-42-SW-42 release contains independent driver sources for the old legacy (pre-
VxBus) and the new VxBus-enabled driver model. The VxBus-enabled driver is recommended for new
developments with later VxWorks 6.x release and mandatory for VxWorks SMP systems.

Both drivers, legacy and VxBus, share the same application programming interface (API).

Both drivers invoke a mutual exclusion and binary semaphore mechanism to prevent simultaneous
requests by multiple tasks from interfering with each other.

The TPMC551-SW-42 device driver supports the following features:

 Setting DAC output value
 Configure, start, and stop DAC-sequencer
 Write data for sequencer cycle
 Use of data correction for simple conversion and in sequencer mode
 Use of latched writes for synchronous output
 Reading TPMC551 configuration (number of channels and uni-/bipolar output)

The TPMC551-SW-42 supports the modules listed below:

TPMC551-10 8 channel 16-bit D/A (Front I/O) (PMC)

TPMC551-11 4 channel 16-bit D/A (Front I/O) (PMC)

TPMC551-21 8 channel 16-bit D/A (Back I/O) (PMC)

TPMC551-21 4 channel 16-bit D/A (Back I/O) (PMC)

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TPMC551 User Manual

TPMC551 Engineering Manual

TPMC551-SW-42 – VxWorks Device Driver Page 5 of 38

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC551-SW-42’:

TPMC551-SW-42-4.0.0.pdf PDF copy of this manual
TPMC551-SW-42-VXBUS.zip Zip compressed archive with VxBus driver sources
TPMC551-SW-42-LEGACY.zip Zip compressed archive with legacy driver sources
ChangeLog.txt Release history
Release.txt Release information

The archive TPMC551-SW-42-VXBUS.zip contains the following files and directories:

Directory path ‘./tews/tpmc551’:

tpmc551drv.c TPMC551 device driver source
tpmc551def.h TPMC551 driver include file
tpmc551.h TPMC551 include file for driver and application
tpmc551api.c TPMC551 API file
tpmc551api.h TPMC551 API include file
Makefile Driver Makefile
40tpmc551.cdf Component description file for VxWorks development tools
tpmc551.dc Configuration stub file for direct BSP builds
tpmc551.dr Configuration stub file for direct BSP builds
include/tvxbHal.h Hardware dependent interface functions and definitions
apps/tpmc551exa.c Example application

The archive TPMC551-SW-42-LEGACY.zip contains the following files and directories:

Directory path ‘./tpmc551’:

tpmc551drv.c TPMC551 device driver source
tpmc551def.h TPMC551 driver include file
tpmc551.h TPMC551 include file for driver and application
tpmc551pci.c TPMC551 device driver source for x86 based systems
tpmc551api.c TPMC551 API file
tpmc551api.h TPMC551 API include file
tpmc551exa.c Example application
tpmc551init.c Legacy driver initialization
include/tdhal.h Hardware dependent interface functions and definitions

TPMC551-SW-42 – VxWorks Device Driver Page 6 of 38

Legacy vs. VxBus Driver2.1

In later VxWorks 6.x releases, the old VxWorks 5.x legacy device driver model was replaced by
VxBus-enabled device drivers. Legacy device drivers are tightly coupled with the BSP and the board
hardware. The VxBus infrastructure hides all BSP and hardware differences under a well defined
interface, which improves the portability and reduces the configuration effort. A further advantage is
the improved performance of API calls by using the method interface and bypassing the VxWorks
basic I/O interface.

VxBus-enabled device drivers are the preferred driver interface for new developments.

The checklist below will help you to make a decision which driver model is suitable and possible for
your application:

Legacy Driver VxBus Driver

VxWorks 5.x releases

VxWorks 6.5 and earlier releases

VxWorks 6.x releases without VxBus
PCI bus support

VxWorks 6.6 and later releases with
VxBus PCI bus

SMP systems (only the VxBus driver is
SMP safe!)

64-bit systems (only the VxBus driver is
64-bit compatible)

TEWS TECHNOLOGIES recommends not using the VxBus Driver before VxWorks release 6.6.
In previous releases required header files are missing and the support for 3

rd
-party drivers may

not be available.

TPMC551-SW-42 – VxWorks Device Driver Page 7 of 38

VxBus Driver Installation2.2

Because Wind River doesn’t provide a standard installation method for 3
rd

party VxBus device drivers
the installation procedure needs to be done manually.

In order to perform a manual installation extract all files from the archive TPMC551-SW-42-VXBUS.zip
to the typical 3

rd
party directory installDir/vxworks-6.x/target/3rdparty (whereas installDir must be

substituted by the VxWorks installation directory).

After successful installation the TPMC551 device driver is located in the vendor and driver-specific
directory installDir/vxworks-6.x/target/3rdparty/tews/tpmc551.

At this point the TPMC551 driver is not configurable and cannot be included with the kernel
configuration tool in a Wind River Workbench project. To make the driver configurable the driver library
for the desired processor (CPU) and build tool (TOOL) must be built in the following way:

(1) Open a VxWorks development shell (e.g. C:\WindRiver\wrenv.exe -p vxworks-6.7)

(2) Change into the driver installation directory
installDir/vxworks-6.x/target/3rdparty/tews/tpmc551

(3) Invoke the build command for the required processor and build tool
make CPU=cpuName TOOL=tool

For Windows hosts this may look like this:

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc551

C:> make CPU=PENTIUM4 TOOL=diab

To compile SMP-enabled libraries, the argument VXBUILD=SMP must be added to the command line

C:> make CPU=PENTIUM4 TOOL=diab VXBUILD=SMP

To build 64-bit libraries, the argument VXBUILD=LP64 must be added to the command line

> make CPU=CORE TOOL=gnu VXBUILD=LP64

For 64-bit SMP-enabled libraries a build command may look like this

> make CPU=CORE TOOL=gnu VXBUILD="LP64 SMP"

To integrate the TPMC551 driver with the VxWorks development tools (Workbench), the component
configuration file 40tpmc551.cdf must be copied to the directory
installDir/vxworks-6.x/target/config/comps/VxWorks.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc551

C:> copy 40tpmc551.cdf \Windriver\vxworks-6.7\target\config\comps\vxWorks

In VxWorks 6.7 and newer releases the kernel configuration tool scans the CDF file automatically and
updates the CxrCat.txt cache file to provide component parameter information for the kernel
configuration tool as long as the timestamp of the copied CDF file is newer than the one of the
CxrCat.txt. If your copy command preserves the timestamp, force to update the timestamp by a utility,
such as touch.

TPMC551-SW-42 – VxWorks Device Driver Page 8 of 38

In earlier VxWorks releases the CxrCat.txt file may not be updated automatically. In this case, remove
or rename the original CxrCat.txt file and invoke the make command to force recreation of this file.

C:> cd \Windriver\vxworks-6.7\target\config\comps\vxWorks

C:> del CxrCat.txt

C:> make

After successful completion of all steps above and restart of the Wind River Workbench, the TPMC551
driver and API can be included in VxWorks projects by selecting the “TEWS TPMC551 Driver“ and
“TEWS TPMC551 API” components in the “hardware (default) - Device Drivers” folder with the kernel
configuration tool.

2.2.1 Direct BSP Builds

In development scenarios with the direct BSP build method without using the Workbench or the vxprj
command-line utility, the TPMC551 configuration stub files must be copied to the directory
installDir/vxworks-6.x/target/config/comps/src/hwif. Afterwards the vxbUsrCmdLine.c file must be
updated by invoking the appropriate make command.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc551

C:> copy tpmc551.dc \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> copy tpmc551.dr \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> cd \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> make vxbUsrCmdLine.c

TPMC551-SW-42 – VxWorks Device Driver Page 9 of 38

Legacy Driver Installation2.3

2.3.1 Include Device Driver in VxWorks Projects

For including the TPMC551-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Extract all files from the archive TPMC551-SW-42-LEGACY.zip to your project directory.

(2) Add the device drivers C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ...’ topic.
A file select box appears, and the driver files in the tpmc551 directory can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.3.2 Special Installation for Intel x86 based Targets

The TPMC551 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TPMC551 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

The C source file tpmc551pci.c contains the function tpmc551PciInit(). This routine finds out all
TPMC551 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

The right place to call the function tpmc551PciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window):

tpmc551PciInit();

Be sure that the function is called prior to MMU initialization otherwise the TPMC551 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

TPMC551-SW-42 – VxWorks Device Driver Page 10 of 38

2.3.3 BSP dependent Adjustments

The driver includes a file called include/tdhal.h which contains functions and definitions for BSP
adaptation. It may be necessary to modify them for BSP specific settings. Most settings can be made
automatically by conditional compilation set by the BSP header files, but some settings must be
configured manually. There are two way of modification, first you can change the include/tdhal.h and
define the corresponding definition and its value, or you can do it, using the command line option –D.

There are 3 offset definitions (USERDEFINED_MEM_OFFSET, USERDEFINED_IO_OFFSET, and
USERDEFINED_LEV2VEC) that must be configured if a corresponding warning message appears
during compilation. These definitions always need values. Definition values can be assigned by
command line option -D<definition>=<value>.

Definition Description

USERDEFINED_MEM_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI
memory space access

USERDEFINED_IO_OFFSET The value of this definition must be set to the offset
between CPU-Bus and PCI-Bus Address for PCI I/O
space access

USERDEFINED_LEV2VEC The value of this definition must be set to the
difference of the interrupt vector (used to connect the
ISR) and the interrupt level (stored to the PCI header)

Another definition allows a simple adaptation for BSPs that utilize a pciIntConnect() function to
connect shared (PCI) interrupts. If this function is defined in the used BSP, the definition of
USERDEFINED_SEL_PCIINTCONNECT should be enabled. The definition by command line option is
made by -D<definition>.

Please refer to the BSP documentation and header files to get information about the interrupt
connection function and the required offset values.

TPMC551-SW-42 – VxWorks Device Driver Page 11 of 38

System Resource Requirement2.4

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement

Memory < 1 KB < 1 KB

Stack < 1 KB ---

Semaphores --- 1

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TPMC551-SW-42 – VxWorks Device Driver Page 12 of 38

3 API Documentation

General Functions3.1

3.1.1 tpmc551Open

NAME

tpmc551Open – opens a device.

SYNOPSIS

TPMC551_HANDLE tpmc551Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a device handle must be opened by a call to this function. If
the legacy TPMC551 driver is used, this function will also install the legacy driver and create devices
with the first call. The VxBus TPMC551 driver will be installed automatically by the VxBus system.

The tpmc551Open function can be called multiple times (e.g. in different tasks).

PARAMETERS

DeviceName

This parameter points to a null-terminated string that specifies the name of the device. The
following device naming must be used:

Device Number Device Name

1 /tpmc551/0

2 /tpmc551/1

TPMC551-SW-42 – VxWorks Device Driver Page 13 of 38

EXAMPLE

#include “tpmc551api.h”

TPMC551_HANDLE hdl;

/*

** open the specified device

*/

hdl = tpmc551Open(“/tpmc551/0”);

if (hdl == NULL)

{

/* handle open error */

}

RETURNS

A device handle, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC551-SW-42 – VxWorks Device Driver Page 14 of 38

3.1.2 tpmc551Close

NAME

tpmc551Close – closes a device.

SYNOPSIS

TPMC551_STATUS tpmc551Close
(

TPMC551_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc551api.h”

TPMC551_HANDLE hdl;

TPMC551_STATUS result;

/*

** close the device

*/

result = tpmc551Close(hdl);

if (result != TPMC551_OK)

{

/* handle close error */

}

TPMC551-SW-42 – VxWorks Device Driver Page 15 of 38

RETURNS

On success, TPMC551_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC551_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC551-SW-42 – VxWorks Device Driver Page 16 of 38

3.1.3 tpmc551GetModuleInfo

NAME

tpmc551GetModuleInfo – Get module information

SYNOPSIS

TPMC551_STATUS tpmc551GetModuleInfo
(

TPMC551_HANDLE hdl,
int *NumChan,
int bipolar[TPMC551_MAX_CHAN],
int OffsCorr[TPMC551_MAX_CHAN],
int GainCorr[TPMC551_MAX_CHAN]

)

DESCRIPTION

This function reads module information data from the specified device.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

NumChan

This argument is a pointer to an int variable where the number of available DAC channels is
returned.

bipolar

This argument is a pointer to an int array where the configured voltage range of each DAC
channel is returned as boolean value. The array element bipolar[0] contains the range stetting
for DAC channel 1, bipolar[1] for DAC channel 2 and so forth. If the corresponding value is
TRUE then the voltage range of the channel is configured to +/- 10V output (bipolar); otherwise
it is configured to 0…10V output voltage range.

OffsCorr

This argument is a pointer to an int array where the factory programmed offset correction data is
returned. OffsCorr[0] contains correction data for DAC channel 1, OffsCorr[1] for DAC channel 2
and so forth.

GainCorr

This argument is a pointer to an int array where the factory programmed gain correction data
are returned. GainCorr[0] contains correction data for DAC channel 1, GainCorr[1] for DAC
channel 2 and so forth.

TPMC551-SW-42 – VxWorks Device Driver Page 17 of 38

EXAMPLE

#include “tpmc551api.h”

TPMC551_HANDLE hdl;

TPMC551_STATUS result;

int NumChan;

int bipolar[TPMC551_MAX_CHAN];

int OffsCorr[TPMC551_MAX_CHAN];

int GainCorr[TPMC551_MAX_CHAN];

/* Get module information data */

result = tpmc551GetModuleInfo(hdl, &NumChan, bipolar, OffsCorr, GainCorr);

if (result != TPMC551_OK)

{

/* handle error */

}

RETURNS

On success, TPMC551_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC551_ERR_INVALID_HANDLE The specified TPMC551_HANDLE is invalid.

TPMC551-SW-42 – VxWorks Device Driver Page 18 of 38

DAC Output Functions3.2

3.2.1 tpmc551DacWrite

NAME

tpmc551DacWrite – write D/A value to specified channel

SYNOPSIS

TPMC551_STATUS tpmc551DacWrite
(

TPMC551_HANDLE hdl,
int channel,
unsigned int flags,
int value

)

DESCRIPTION

This function writes a new value to a specific channel and starts D/A conversion immediately in
transparent mode

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

channel

This argument specifies the DAC channel which shall be updated. Possible values are 1 up to
the number of available DAC channels of the specific module.

flags

This argument specifies a set of bit flags that control the D/A conversion:

Value Description

TPMC551_CORR Perform an offset and gain correction with factory
calibration data stored in the TPMC551 EEPROM.

value

This argument specifies the new 16-bit D/A value. Valid data range depends on the voltage
range of the specified channel (0…65535 for 0...10V voltage range and -32768…32767 for +/-
10V voltage range).

TPMC551-SW-42 – VxWorks Device Driver Page 19 of 38

EXAMPLE

#include “tpmc551api.h”

TPMC551_HANDLE hdl;

TPMC551_STATUS result;

result = tpmc551DacWrite(hdl, 1, TPMC551_CORR, 12345);

if (result != TPMC551_OK)

{

/* handle error */

}

RETURNS

On success, TPMC551_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC551_ERR_INVALID_HANDLE The specified TPMC551_HANDLE is invalid.

TPMC551_ERR_RANGE Invalid channel number

TPMC551_ERR_TIMEOUT Timeout during D/A conversion

TPMC551_ERR_BUSY This error occurs if the sequencer is still running.
Please stop the sequencer before executing this
function.

TPMC551-SW-42 – VxWorks Device Driver Page 20 of 38

3.2.2 tpmc551DacWriteMulti

NAME

tpmc551DacWriteMulti – write D/A value to multiple channels

SYNOPSIS

TPMC551_STATUS tpmc551DacWriteMulti
(

TPMC551_HANDLE hdl,
unsigned int ChannelMask,
unsigned int flags,
int values[TPMC551_MAX_CHAN]

)

DESCRIPTION

This function writes new values to specified channels and starts D/A conversion immediately
(transparent mode) or simultaneously (latched mode).

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

ChannelMask

This argument selects DAC channels which shall be updated. A set (1) bit specifies that the
corresponding channel shall be updated. Bit 0 corresponds to the first DAC channel, bit 1
corresponds to the second DAC channel and so on.

flags

This argument specifies a set of bit flags that control the D/A conversion:

Value Description

TPMC551_CORR Perform an offset and gain correction with factory
calibration data stored in the TPMC551 EEPROM for all
selected channels.

TPMC551_SIMCONV Start conversion of selected channels in latched mode
and update analog outputs simultaneously.

values

This array contains the new 16-bit D/A values. Valid data range depends on the voltage range
of the specified channel (0…65535 for 0...10V voltage range and -32768…32767 for +/-10V
voltage range).
Array index 0 corresponds to the first DAC channel, array index 1 corresponds to the second
DAC channel and so on. Only channels selected for update (ChannelMask) will be modified.

TPMC551-SW-42 – VxWorks Device Driver Page 21 of 38

EXAMPLE

#include “tpmc551api.h”

TPMC551_HANDLE hdl;

TPMC551_STATUS result;

unsigned int ChannelMask;

unsigned int flags;

int values[TPMC551_MAX_CHAN];

/* Update channel 1, 4 and 8 simultaneously with corrected D/A values */

ChannelMask = (1<<0) | (1<<3) | (1<<7);

flags = TPMC551_CORR | TPMC551_SIMCONV;

value[0] = 1111; /* channel 1 */

value[3] = 4444; /* channel 4 */

value[7] = 8888; /* channel 8 */

result = tpmc551DacWriteMulti(hdl, ChannelMask, flags, values);

if (result != TPMC551_OK)

{

/* handle error */

}

RETURNS

On success, TPMC551_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC551_ERR_INVALID_HANDLE The specified TPMC551_HANDLE is invalid.

TPMC551_ERR_RANGE Invalid channel number

TPMC551_ERR_TIMEOUT Timeout during D/A conversion

TPMC551_ERR_BUSY This error occurs if the sequencer is still running.
Please stop the sequencer before executing this
function.

TPMC551-SW-42 – VxWorks Device Driver Page 22 of 38

Sequencer Functions3.3

3.3.1 tpmc551SeqSetup

NAME

tpmc551SeqSetup – Setup sequencer facility

SYNOPSIS

TPMC551_STATUS tpmc551SeqSetup
(

TPMC551_HANDLE hdl,
int CycleTime,
int NumActiveChannels,
int NumBufTuples,
int ChannelAllocation[TPMC551_MAX_CHAN],
unsigned int flags

)

DESCRIPTION

This function configures the sequencer facility and allocates memory for the sequencer software ring
buffer. The behaviour of the sequencer facility is controlled by a set of bit flags which are described
below.

Basically the sequencer will perform a D/A conversion on active channels in a deterministic time
period controlled by a cycle timer or the duration of the conversion itself. To be sure that D/A data will
be available for the next cycle just in-time, data for the sequencer will be provided by a configurable
ring buffer. The ring buffer can be asynchronously filled by the application program.

The sequencer facility provides two operating modes. In loop mode (TPMC551_LOOP) the buffer will
be filled completely with new data (e.g. wave form). The contents of the buffer will be output
continuously in a loop. In normal mode (TPMC551_LOOP is not set) the application program must
provide new data for every cycle. If the buffer is empty then the sequencer will stop and it holds the
last output value until new data arrives.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

CycleTime

This argument specifies the sequencer cycle time in steps of 100 µs. This argument is only
relevant if the flag TPMC551_TIMERMODE is set.

TPMC551-SW-42 – VxWorks Device Driver Page 23 of 38

NumActiveChannels

This argument specifies the number of active channels. Valid range is 1 up to the number of
available channels (4 or 8).

NumBufTuples

This argument specifies the size of the sequencer software ring buffer. In this case size is not
the number of bytes to allocate but rather the number of tuples (data for all active channels per
cycle).

ChannelAllocation

This argument specifies the channel number of active channels and their enumeration inside a
tuple. The function tpmc551SeqWrite awaits new data for active channels in this order. The first
array element contains the channel number (1...n) of the first active channel. The second array
element the channel number of the second active channel and so forth. Unused array elements
can be left undefined.

flags

This argument specifies a set of bit flags that control the sequencer operation:

Value Description

TPMC551_TIMERMODE If set, the cycle of D/A conversions will be controlled by
the sequencer timer in steps of 100 microseconds;
otherwise the sequencer will run in continuous mode as
fast as possible (based on the conversion time).

TPMC551_LOOP If this flag is set (loop mode) the ring buffer never
becomes empty. Once completely filled the sequencer
will continuously get data out of the buffer for the next
conversion.

If this flag is not set (normal mode) and the buffer
becomes empty then the sequencer will stop and it
holds the last output value until new data arrives.

TPMC551_CORR Perform an offset and gain correction with factory
calibration data stored in the TPMC551 EEPROM for all
selected channels.

TPMC551_SIMCONV Start conversion of active channels in latched mode and
update analog outputs simultaneously.

EXAMPLE

#include “tpmc551api.h”

TPMC551_HANDLE hdl;

TPMC551_STATUS result;

int ChannelAllocation[TPMC551_MAX_CHAN];

unsigned int flags;

…

TPMC551-SW-42 – VxWorks Device Driver Page 24 of 38

…

/* Setup the sequencer with 2 active channels (1 and 4) in timer mode */

/* with 1 ms cycle time. The sequencer buffer shall store data tuples */

/* for up to 100 cycles. */

ChannelAllocation[0] = 1;

ChannelAllocation[1] = 4;

flags = TPMC551_TIMERMODE | TPMC551_CORR | TPMC551_SIMCONV;

result = tpmc551SeqSetup(hdl, 10, 2, 100, ChannelAllocation, flags);

if (result != TPMC551_OK)

{

/* handle error */

}

RETURNS

On success, TPMC551_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC551_ERR_INVALID_HANDLE The specified TPMC551_HANDLE is invalid.

TPMC551_ERR_RANGE Invalid channel number or invalid number of
channels.

TPMC551_ERR_NOMEM Unable to allocate memory for the ring buffer.

TPMC551_ERR_BUSY This error occurs if the sequencer is still running.
Please stop the sequencer before executing this
function.

TPMC551-SW-42 – VxWorks Device Driver Page 25 of 38

3.3.2 tpmc551SeqStart

NAME

tpmc551SeqStart – start sequencer facility

SYNOPSIS

TPMC551_STATUS tpmc551SeqStart
(

TPMC551_HANDLE hdl
)

DESCRIPTION

This function starts the sequencer facility. Before calling this function the sequencer must be setup
with tpmc551SeqSetup und the ring buffer must be filled with tpmc551SeqWrite.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc551api.h”

TPMC551_HANDLE hdl;

TPMC551_STATUS result;

/* start the sequencer */

result = tpmc551SeqStart(hdl);

if (result != TPMC551_OK)

{

/* handle error */

}

TPMC551-SW-42 – VxWorks Device Driver Page 26 of 38

RETURNS

On success, TPMC551_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC551_ERR_INVALID_HANDLE The specified TPMC551_HANDLE is invalid.

TPMC551_ERR_NOT_READY The sequencer facility was not properly configured.
Execute the function tpmc551SeqSetup first.

TPMC551_ERR_NODATA No data is available in the ring buffer to start the
sequencer facility. Use the function
tpmc551SeqWrite to write at least one data tuple
before starting the sequencer.

TPMC551-SW-42 – VxWorks Device Driver Page 27 of 38

3.3.3 tpmc551SeqStop

NAME

tpmc551SeqStop – stop the sequencer facility

SYNOPSIS

TPMC551_STATUS tpmc551SeqStop
(

TPMC551_HANDLE hdl
)

DESCRIPTION

This function stops the sequencer facility. All allocated resources (e.g. ring buffer memory) will be
freed.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc551api.h”

TPMC551_HANDLE hdl;

TPMC551_STATUS result;

/* stop the sequencer */

result = tpmc551SeqStop(hdl);

if (result != TPMC551_OK)

{

/* handle error */

}

TPMC551-SW-42 – VxWorks Device Driver Page 28 of 38

RETURNS

On success, TPMC551_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC551_ERR_INVALID_HANDLE The specified TPMC551_HANDLE is invalid.

TPMC551-SW-42 – VxWorks Device Driver Page 29 of 38

3.3.4 tpmc551SeqWrite

NAME

tpmc551SeqWrite – write new sequencer data

SYNOPSIS

TPMC551_STATUS tpmc551SeqWrite
(

TPMC551_HANDLE hdl,
int size,
int *values,
int *WrittenSize

);

DESCRIPTION

This function writes new data to the sequencers data buffer. The provided data buffer must always
contain new data for all active channels (tuple). The number of tuples per write must be at least one
up to “unlimited”. This function will always write as many tuples as possible. If the buffer becomes full
the function will return immediately with the error TPMC551_ERR_BUF_FULL. The number of written
bytes will be returned in a variable pointed to by WrittenSize.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

size

This argument specifies the size (in bytes) of the data buffer to write.

values

This argument is a pointer to an array of int variables that contains data for all active channels
for at least one sequencer cycle (tuple). Despite of the declaration as simple int pointer this
array is treated as a two-dimensional array with variable dimensions. The rows of the array
represent the number of tuples and the columns the number of active channels. A declaration of
this array will look like this: data[tuples][channels].

WrittenSize

This argument is a pointer to an int variable where the number of written bytes is returned. In
case of the error TPMC551_ERR_BUF_FULL this value can be used to adjust the buffer start
pointer for subsequent writes.

TPMC551-SW-42 – VxWorks Device Driver Page 30 of 38

EXAMPLE

#include “tpmc551api.h”

TPMC551_HANDLE hdl;

TPMC551_STATUS result;

int WrittenSize;

int ForOneCycle[4];

int ForHundredCycles[100][4];

/* Fill new data into the data buffers */

ForHundredCycles[0][0] = 1; /* first cycle, first channel */

ForHundredCycles[0][1] = 2; /* first cycle, second channel */

...

ForHundredCycles[1][0] = 11; /* second cycle, first channel */

...

ForHundredCycles[99][3] = 1234; /* 100th cycle, last channel */

/* Write new data for 100 cycles and 4 active channels (100 * 4 values) */

result = tpmc551SeqWrite(

hdl,

sizeof(ForHundredCycles),

(int*)ForHundredCycles,

&WrittenSize);

if (result != TPMC551_OK)

{

/* handle error */

if (result == TPMC551_ERR_BUF_FULL)

{

/* send remaining data later */

}

}

/* Write new data for 1 cycle and 4 active channels (4 values) */

result = tpmc551SeqWrite(

hdl,

sizeof(ForOneCycle),

ForOneCycle,

&WrittenSize);

TPMC551-SW-42 – VxWorks Device Driver Page 31 of 38

RETURNS

On success, TPMC551_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC551_ERR_INVALID_HANDLE The specified TPMC551_HANDLE is invalid.

TPMC551_ERR_NOT_READY The sequencer is not running

TPMC551_ERR_BUF_TOO_SMALL The buffer does not contain enough data for all
active channels.

TPMC551_ERR_NOMEM The passed data buffer does not fit into the
configured sequencer buffer. This error is only
relevant in loop mode (TPMC551_LOOP)

TPMC551_ERR_BUF_FULL The sequencer buffer is full. Not all data was
written to the buffer. Use the contents of
WrittenSize to adjust the data pointer to write the
remaining data tuples.

TPMC551-SW-42 – VxWorks Device Driver Page 32 of 38

3.3.5 tpmc551SeqFlush

NAME

tpmc551SeqFlush – flush the sequencer ring buffer

SYNOPSIS

TPMC551_STATUS tpmc551SeqFlush
(

TPMC551_HANDLE hdl
);

DESCRIPTION

This function flushes the ring buffer of the sequencer facility. The analog output of active channels will
hold the last converted data until new data is written with the tpmc551SeqWrite function.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc551api.h”

TPMC551_HANDLE hdl;

TPMC551_STATUS result;

/* flush the sequencer ring buffer */

result = tpmc551SeqFlush(hdl);

if (result != TPMC551_OK)

{

/* handle error */

}

TPMC551-SW-42 – VxWorks Device Driver Page 33 of 38

RETURNS

On success, TPMC551_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC551_ERR_INVALID_HANDLE The specified TPMC551_HANDLE is invalid.

TPMC551-SW-42 – VxWorks Device Driver Page 34 of 38

3.3.6 tpmc551SeqStatus

NAME

tpmc551SeqStatus – get sequencer status and statistic information

SYNOPSIS

TPMC551_STATUS tpmc551SeqStatus
(

TPMC551_HANDLE hdl,
int *OperatingState,
int *status,
int *CycleCount,
int *UnderflowCount,
int *EmptyCount

);

DESCRIPTION

This function reads sequencer status and statistic information from the specified device.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OperatingState

This argument is a pointer to an int variable where the current operating state of the sequencer
is returned. Possible operating states are:

Value Description

TPMC551_STOPPED The sequencer is stopped.

TPMC551_READY The sequencer facility is configured and ready to start.

TPMC551_RUNNING The sequencer is running.

TPMC551-SW-42 – VxWorks Device Driver Page 35 of 38

status

This argument is a pointer to an int variable where current error/status of the sequencer is
returned. After calling this function the error/status code will be set to TPMC551_SEQ_OK.
Possible error/status codes are:

Value Description

TPMC551_SEQ_OK Sequencer is working fine. No errors detected.

TPMC551_SEQ_UNDERFLOW The sequencer hardware has detected a data
underflow condition. The driver was not able to provide
new data within a sequencer timer cycle.

TPMC551_SEQ_NODATA No data available in the ring buffer for output.

CycleCount

This argument is a pointer to an int variable where the total number of sequencer cycles since
sequencer start is returned.

UnderflowCount

This argument is a pointer to an int variable where the total number of sequencer underflows
since sequencer start is returned.

EmptyCount

This argument is a pointer to an int variable where the total number of empty buffer cycles since
sequencer start is returned.

EXAMPLE

#include “tpmc551api.h”

TPMC551_HANDLE hdl;

TPMC551_STATUS result;

int OperatingState;

int status;

int CycleCount;

int UnderflowCount;

int EmptyCount;

/* Read sequencer status and statistic information */

result = tpmc551SeqStatus(hdl, &OperatingState, &status, &CycleCount,

&UnderflowCount, &EmptyCount);

if (result != TPMC551_OK)

{

/* handle error */

}

TPMC551-SW-42 – VxWorks Device Driver Page 36 of 38

RETURNS

On success, TPMC551_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC551_ERR_INVALID_HANDLE The specified TPMC551_HANDLE is invalid.

TPMC551-SW-42 – VxWorks Device Driver Page 37 of 38

4 Legacy I/O System Functions
This chapter describes functions which are relevant only for the legacy TPMC551 driver.

tpmc551PciInit4.1

NAME

tpmc551PciInit() – Generic PCI device initialization

SYNOPSIS

void tpmc551PciInit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC551 PCI spaces (base address register) and to enable the TPMC551
device for access.

The global variable tpmc551Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

> 0 Initialization successful completed. The value of tpmc551Status is equal to the
number of mapped PCI spaces

0 No TPMC551 device found

< 0 Initialization failed. The value of (tpmc551Status & 0xFF) is equal to the number
of mapped spaces until the error occurs.

Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].

Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tpmc551PciInit();

tpmc551PciInit();

TPMC551-SW-42 – VxWorks Device Driver Page 38 of 38

5 Debugging and Diagnostic
The TPMC551 device driver provides a function and debug statements to display versatile information
of the driver installation and status on the debugging console.

If the VxBus driver is used, the TPMC551 show routine is included in the driver by default and can be
called from the VxWorks shell. If this function is not needed or program space is rare the function can
be removed from the code by un-defining the macro INCLUDE_TPMC551_SHOW in tpmc551drv.c

The tpmc551Show function (only if VxBus is used) displays detailed information about probed
modules, assignment of devices respective device names to probed TPMC551 modules and device
statistics.

If TPMC551 modules were probed but no devices were created it may helpful to enable debugging
code inside the driver code by defining the macro TPMC551_DEBUG in tpmc551drv.c.

In contrast to VxBus TPMC551 devices, legacy TPMC551 devices must be created “manually”.
This will be done with the first call to the tpmc551Open API function.

-> tpmc551Show

Probed Modules:

[0] TPMC551: Bus=4, Dev=1, DevId=0x9050, VenId=0x10b5, Init=OK, vxDev=0x5380

Associated Devices:

[0] TPMC551: /tpmc551/0

Device Statistics:

/tpmc551/0:

Open Count = 0

Sequencer Cycle Count = 0

Channels Output Range and Correction-Data (Offset/Gain):

#1 [-10V... +10V] - -11/45

#2 [-10V... +10V] - 10/34

#3 [-10V... +10V] - -12/42

#4 [-10V... +10V] - -13/48

#5 [0V... +10V] - -19/29

#6 [0V... +10V] - -12/23

#7 [0V... +10V] - -15/27

#8 [0V... +10V] - -13/29

	1	Introduction
	2	Installation
	2.1	Legacy vs. VxBus Driver
	2.2	VxBus Driver Installation
	2.2.1	Direct BSP Builds

	2.3	Legacy Driver Installation
	2.3.1	Include Device Driver in VxWorks Projects
	2.3.2	Special Installation for Intel x86 based Targets
	2.3.3	BSP dependent Adjustments

	2.4	System Resource Requirement

	3	API Documentation
	3.1	General Functions
	3.1.1	tpmc551Open
	3.1.2	tpmc551Close
	3.1.3	tpmc551GetModuleInfo

	3.2	DAC Output Functions
	3.2.1	tpmc551DacWrite
	3.2.2	tpmc551DacWriteMulti

	3.3	Sequencer Functions
	3.3.1	tpmc551SeqSetup
	3.3.2	tpmc551SeqStart
	3.3.3	tpmc551SeqStop
	3.3.4	tpmc551SeqWrite
	3.3.5	tpmc551SeqFlush
	3.3.6	tpmc551SeqStatus

	4	Legacy I/O System Functions
	4.1	tpmc551PciInit

	5	Debugging and Diagnostic

