
The Embedded I/O Company

TPMC600-S
Linux Device D

32/16 Digital Inputs

Version 2.0.x

User Manu

Issue 2.0.1

March 2024

TEWS Technologies Gm

Eggerstedter Weg 14, 25421 Pinnebe

Phone: +49 (0) 4101 4058

e-mail: info@tews.com www.tews
W-82
river

 (24V)

al

bH

rg, Germany

 0

.com

mailto:info@tews.com
http://www.tews.com/

TPMC600-SW-82 – Linux Device Driver Page 2 of 34

TPMC600-SW-82

Linux Device Driver

32/16 Digital Inputs (24V)

Supported Modules:
TPMC600

This document contains information, which is
proprietary to TEWS Technologies GmbH. Any
reproduction without written permission is forbidden.

TEWS Technologies GmbH has made any effort to
ensure that this manual is accurate and complete.
However TEWS Technologies GmbH reserves the
right to change the product described in this
document at any time without notice.

TEWS Technologies GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2009-2024 by TEWS Technologies GmbH

Issue Description Date

1.0.0 First Issue September 16, 2009

1.0.1 Layout specific modifications February 12, 2011

2.0.0 API implemented, description of ioctl removed June 24,.2020

2.0.1 New Address TEWS Technologies GmbH March 8, 2024

TPMC600-SW-82 – Linux Device Driver Page 3 of 34

Table of Contents

1 INTRODUCTION ... 4

2 INSTALLATION .. 5

Build and install the Device Driver .. 5

Uninstall the Device Driver .. 6

Install the Device Driver into a running Kernel .. 6

Remove the Device Driver from a running Kernel ... 6

Change Major Device Number ... 7

Maximum Number of Active Jobs Configuration .. 7

3 API DOCUMENTATION ... 8

General Functions... 8

3.1.1 tpmc600Open ... 8
3.1.2 tpmc600Close ... 10
3.1.3 tpmc600GetPciInfo ... 12
Device Access Functions ... 15

3.2.1 tpmc600Read ... 15
3.2.2 tpmc600EnableDebouncer ... 17
3.2.3 tpmc600DisableDebouncer .. 19
3.2.4 tpmc600WaitForAnyEvent .. 21
3.2.5 tpmc600WaitForHighEvent ... 23
3.2.6 tpmc600WaitForLowEvent ... 25
3.2.7 tpmc600ReadOnAnyEvent ... 27
3.2.8 tpmc600ReadOnHighEvent .. 29
3.2.9 tpmc600ReadOnLowEvent ... 31

4 DIAGNOSTIC .. 33

TPMC600-SW-82 – Linux Device Driver Page 4 of 34

1 Introduction
The TPMC600-SW-82 Linux device driver allows the operation of the TPMC600 Digital Input PMC
conforming to the Linux I/O system specification

The TPMC600-SW-82 device driver supports the following features:

 Read digital input value immediately or after a selected event occurs
 Wait for events on input lines
 Configure input hardware debouncing

The TPMC600-SW-82 device driver supports the modules listed below:

TPMC600-10 32 digital inputs (Front Panel I/O) (PMC)

TPMC600-11 16 digital inputs (Front Panel I/O) (PMC)

TPMC600-20 32 digital inputs (P14 I/O) (PMC)

TPMC600-21 16 digital inputs (P14 I/O) (PMC)

To get more information about the features and use of TPMC600 devices it is recommended to read
the manuals listed below.

TPMC600 User Manual

TPMC600-SW-82 – Linux Device Driver Page 5 of 34

2 Installation
The directory TPMC600-SW-82 on the distribution media contains the following files:

TPMC600-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
TPMC600-SW-82-2.0.1.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

The GZIP compressed archive TPMC600-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘tpmc600’:

tpmc600.c TPMC600 device driver source
tpmc600def.h TPMC600 driver include file
tpmc600.h TPMC600 include file for driver and application
Makefile Device Driver Makefile
makenode Script for Device Node Creation in File System
COPYING Copy of the GNU Public License (GPL)
api/tpmc600api.h API include file
api/tpmc600api.c API source file
include/tpxxxhwdep.c Hardware dependent library
include/tpxxxhwdep.h Hardware dependent library header file
include/tpmodule.c Driver independent library
include/tpmodule.h Driver independent library header file
include/config.h Driver independent library header file
example/tpmc600exa.c Example Application
example/Makefile Makefile for Example Application

In order to perform an installation, extract all files of the archive TPMC600-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TPMC600-SW-82-SRC.tar.gz’ will extract the files
into the local directory.

 Build and install the Device Driver

 Login as root

 Change to the target directory

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

 To update the device driver’s module dependencies, enter:

depmod -aq

TPMC600-SW-82 – Linux Device Driver Page 6 of 34

 Uninstall the Device Driver

 Login as root

 Change to the target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

 Install the Device Driver into a running Kernel

 To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tpmc600drv

 After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TPMC600 module found. The first
TPMC600 module can be accessed with device node /dev/tpmc600_0, the second module with device
node /dev/tpmc600_1, and so on.

The assignment of device nodes to physical TPMC600 modules depends on the search order of the
PCI bus driver.

 Remove the Device Driver from a running Kernel

 To remove the device driver from the running kernel login as root and execute the following
command:

modprobe -r tpmc600drv

If your kernel has enabled a dynamic file system, all /dev/tpmc600_x nodes will be automatically
removed from your file system after this.

Make sure that the driver isn’t opened by any application program. If opened you will get the
response “tpmc600drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

TPMC600-SW-82 – Linux Device Driver Page 7 of 34

 Change Major Device Number

This paragraph is only for Linux kernels without devfs installed. The TPMC600 driver use dynamic
allocation of major device numbers per default. If this isn’t suitable for the application it is possible
to define a major number for the driver.

To change the major number edit the file tpmc600def.h, change the following symbol to appropriate
value and enter make install to create a new driver.

TPMC600_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TPMC600_MAJOR 122

Be sure that the desired major number is not used by other drivers. Please check /proc/devices
to see which numbers are free.

 Maximum Number of Active Jobs Configuration

The maximum number of active event read jobs per major device can be configured. This can be
simply made by changing the value of the symbol in tpmc600def.h.

NUM_REQUESTS Defines the maximum number of active event wait jobs
(default = 100). Valid numbers are in range between 1 and MAXINT.

TPMC600-SW-82 – Linux Device Driver Page 8 of 34

3 API Documentation

 General Functions

3.1.1 tpmc600Open

NAME

tpmc600Open – open a device

SYNOPSIS

TPMC600_HANDLE tpmc600Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a device handle must be opened by a call to this function.

The tpmc600Open function can be called multiple times (e.g. in different tasks).

PARAMETERS

DeviceName

This parameter points to a null-terminated string that specifies the name of the device. The first
TPMC600 device is named “/dev/tpmc600_0” the second device is named “/dev/tpmc600_1”
and so on.

TPMC600-SW-82 – Linux Device Driver Page 9 of 34

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

/*

** open the specified device

*/

hdl = tpmc600Open(“/dev/tpmc600_0”);

if (hdl == NULL)

{

 /* handle open error */

}

RETURNS

A device handle, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC600-SW-82 – Linux Device Driver Page 10 of 34

3.1.2 tpmc600Close

NAME

tpmc600Close – close a device

SYNOPSIS

TPMC600_STATUS tpmc600Close
(

TPMC600_HANDLE hdl
)

DESCRIPTION

This function closes a previously opened device.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

TPMC600_STATUS result;

/*

** close the device

*/

result = tpmc600Close(hdl);

if (result != TPMC600_OK)

{

 /* handle close error */

}

TPMC600-SW-82 – Linux Device Driver Page 11 of 34

RETURNS

On success, TPMC600_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC600_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC600-SW-82 – Linux Device Driver Page 12 of 34

3.1.3 tpmc600GetPciInfo

NAME

tpmc600GetPciInfo – get PCI information of the module

SYNOPSIS

TPMC600_STATUS tpmc600GetPciInfo
(

TPMC600_HANDLE hdl,
TPMC600_PCIINFO_BUF *pPciInfoBuf

)

DESCRIPTION

This function returns information about the module’s PCI header as well as the PCI localization.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pPciInfoBuf

This argument is a pointer to the structure TPMC600_PCIINFO_BUF that receives information
of the module PCI header.

typedef struct

{

unsigned short vendorId;

unsigned short deviceId;

unsigned short subSystemId;

unsigned short subSystemVendorId;

int pciBusNo;

int pciDevNo;

int pciFuncNo;

} TPMC600_PCIINFO_BUF;

TPMC600-SW-82 – Linux Device Driver Page 13 of 34

vendorId

PCI module vendor ID.

deviceId

PCI module device ID

subSystemId

PCI module sub system ID

subSystemVendorId

PCI module sub system vendor ID

pciBusNo

Number of the PCI bus, where the module resides.

pciDevNo

PCI device number

pciFuncNo

PCI function number

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

TPMC600_STATUS result;

TPMC600_PCIINFO_BUF pciInfoBuf;

/*

** get module PCI information

*/

result = tpmc600GetPciInfo(hdl, &pciInfoBuf);

if (result == TPMC600_OK)

{

 printf(“PCI Localization (Bus:Dev.Func): %d:%d.%d\n”,

 pciInfoBuf.pciBusNo,

 pciInfoBuf.pciDevNo,

 pciInfoBuf.pciFuncNo);

}

else

{

 /* handle error */

}

TPMC600-SW-82 – Linux Device Driver Page 14 of 34

RETURN VALUE

On success, TPMC600_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC600_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC600_ERR_INVAL Specified pointer is invalid.

TPMC600-SW-82 – Linux Device Driver Page 15 of 34

 Device Access Functions

3.2.1 tpmc600Read

NAME

tpmc600Read – read input state of device

SYNOPSIS

TPMC600_STATUS tpmc600Read
(

TPMC600_HANDLE hdl,
unsigned int *pDigInVal

)

DESCRIPTION

This function reads the current input state of the device.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pDigInVal

This argument points to a 32-bit buffer where the state of the input lines will be returned. Bit 0 of
the returned value represents the state of IN1, bit 1 of IN2, and so on. If a module variant is
used, supporting less than 32 input lines, the unused bits will be set to 0.

TPMC600-SW-82 – Linux Device Driver Page 16 of 34

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

TPMC600_STATUS result;

unsigned int in_value;

/*

** read current state of I/O lines

*/

result = tpmc600Read(hdl, &in_value);

if (result == TPMC600_OK)

{

 printf(“input value: 0x%08X\n”, in_value);

}

else

{

 /* handle error */

}

RETURN VALUE

On success, TPMC600_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC600_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC600_ERR_INVAL Specified pointer is invalid.

TPMC600-SW-82 – Linux Device Driver Page 17 of 34

3.2.2 tpmc600EnableDebouncer

NAME

tpmc600EnableDebouncer – configure and enable input debouncer

SYNOPSIS

TPMC600_STATUS tpmc600EnableDebouncer
(

TPMC600_HANDLE hdl,
unsigned short debValue

)

DESCRIPTION

This function configures the input debouncer, which shall prevent the board to detect fast faulty signal
changes.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

debValue

This argument specifies the debouncer timer value. Valid values are 0 for 7us and 65535 for
440ms. Please refer to the TPMC600 User Manual for a detailed description.

TPMC600-SW-82 – Linux Device Driver Page 18 of 34

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

TPMC600_STATUS result;

/*

** enable debouncer with a debounce time of ~1ms (143)

*/

result = tpmc600EnableDebouncer(hdl, 143);

if (result == TPMC600_OK)

{

 /* debouncer enabled */

}

else

{

 /* handle error */

}

RETURN VALUE

On success, TPMC600_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC600_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC600-SW-82 – Linux Device Driver Page 19 of 34

3.2.3 tpmc600DisableDebouncer

NAME

tpmc600DisableDebouncer – disable input debouncer

SYNOPSIS

TPMC600_STATUS tpmc600DisableDebouncer
(

TPMC600_HANDLE hdl
)

DESCRIPTION

This function disables the input debouncer.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

TPMC600_STATUS result;

/*

** disable debouncer function

*/

result = tpmc600DisableDebouncer(hdl);

if (result == TPMC600_OK)

{

 /* debouncer disabled */

}

else

{

 /* handle error */

}

TPMC600-SW-82 – Linux Device Driver Page 20 of 34

RETURN VALUE

On success, TPMC600_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC600_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC600-SW-82 – Linux Device Driver Page 21 of 34

3.2.4 tpmc600WaitForAnyEvent

NAME

tpmc600WaitForAnyEvent – wait for transition on input line

SYNOPSIS

TPMC600_STATUS tpmc600WaitForAnyEvent
(

TPMC600_HANDLE hdl,
int inputLine,
int msTimeout

)

DESCRIPTION

This function waits for a transition on the specified input line.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

inputLine

This argument specifies the input line. A value of 1 must be specified for IN1, 2 for IN2 and so
on. The maximum valid input line depends on the used module variant.

msTimeout

This argument specifies the maximum time in milliseconds the function will wait for the specified
event. If the time elapses without the event occurred, the function will return with an adequate
error. A value of -1 specifies that the function never times out.

TPMC600-SW-82 – Linux Device Driver Page 22 of 34

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

TPMC600_STATUS result;

/*

** wait for a transition (any) on IN12

** timeout after approx. 10 sec.

*/

result = tpmc600WaitForAnyEvent(hdl, 12, 10000);

if (result == TPMC600_OK)

{

 /* event occurred */

}

else

{

 /* handle error */

}

RETURN VALUE

On success, TPMC600_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC600_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC600_ERR_TIMEOUT The event did not occur in the specified time

TPMC600-SW-82 – Linux Device Driver Page 23 of 34

3.2.5 tpmc600WaitForHighEvent

NAME

tpmc600WaitForHighEvent – wait for low-to-high transition on input line

SYNOPSIS

TPMC600_STATUS tpmc600WaitForHighEvent
(

TPMC600_HANDLE hdl,
int inputLine,
int msTimeout

)

DESCRIPTION

This function waits for a low-to-high transition on the specified input line.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

inputLine

This argument specifies the input line. A value of 1 must be specified for IN1, 2 for IN2 and so
on. The maximum valid input line depends on the used module variant.

msTimeout

This argument specifies the maximum time in milliseconds the function will wait for the specified
event. If the time elapses without the event occurred, the function will return with an adequate
error. A value of -1 specifies that the function never times out.

TPMC600-SW-82 – Linux Device Driver Page 24 of 34

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

TPMC600_STATUS result;

/*

** wait for a transition (low-to-high) on IN12

** timeout after approx. 10 sec.

*/

result = tpmc600WaitForHighEvent(hdl, 12, 10000);

if (result == TPMC600_OK)

{

 /* event occurred */

}

else

{

 /* handle error */

}

RETURN VALUE

On success, TPMC600_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC600_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC600_ERR_TIMEOUT The event did not occur in the specified time

TPMC600-SW-82 – Linux Device Driver Page 25 of 34

3.2.6 tpmc600WaitForLowEvent

NAME

tpmc600WaitForLowEvent – wait for high-to-low transition on input line

SYNOPSIS

TPMC600_STATUS tpmc600WaitForLowEvent
(

TPMC600_HANDLE hdl,
int inputLine,
int msTimeout

)

DESCRIPTION

This function waits for high-to-low transition on the specified input line.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

inputLine

This argument specifies the input line. A value of 1 must be specified for IN1, 2 for IN2 and so
on. The maximum valid input line depends on the used module variant.

msTimeout

This argument specifies the maximum time in milliseconds the function will wait for the specified
event. If the time elapses without the event occurred, the function will return with an adequate
error. A value of -1 specifies that the function never times out.

TPMC600-SW-82 – Linux Device Driver Page 26 of 34

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

TPMC600_STATUS result;

/*

** wait for a transition (High-to-low) on IN12

** timeout after approx. 10 sec.

*/

result = tpmc600WaitForLowEvent(hdl, 12, 10000);

if (result == TPMC600_OK)

{

 /* event occurred */

}

else

{

 /* handle error */

}

RETURN VALUE

On success, TPMC600_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC600_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC600_ERR_TIMEOUT The event did not occur in the specified time

TPMC600-SW-82 – Linux Device Driver Page 27 of 34

3.2.7 tpmc600ReadOnAnyEvent

NAME

tpmc600ReadOnAnyEvent – wait for 1st transition on set of input lines and return input state

SYNOPSIS

TPMC600_STATUS tpmc600ReadOnAnyEvent
(

TPMC600_HANDLE hdl,
unsigned int inputMask,
int msTimeout,
unsigned int *pDigInVal

)

DESCRIPTION

This function waits for the first transition on any of the specified input lines. After detection of the
transition the input state will be read and returned.

There is a delay between the transition and actual reading of the input state. This means that
the returned value represents the input state a short time after the transition has occurred.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

inputMask

This argument specifies a mask of input lines that are active to wait for a transition. A set bit
specifies an active input line. Input lines set to 0 will not be observed. Bit 0 is assigned to IN1,
bit 1 to IN2, and so on.

msTimeout

This argument specifies the maximum time in milliseconds the function will wait for the specified
event. If the time elapses without the event occurred, the function will return with an adequate
error. A value of -1 specifies that the function never times out.

pDigInVal

This argument points to a buffer where the state of the input lines will be returned. Bit 0 of the
returned value represents the state of IN1, bit 1 of IN2, and so on. If a module variant is used,
supporting less than 32 input lines, the unused bits will be set to 0.

TPMC600-SW-82 – Linux Device Driver Page 28 of 34

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

TPMC600_STATUS result;

unsigned int inVal;

/*

** read input state after 1st transition (any)

** on IN1, IN2, IN3, IN4, or IN16

** timeout after approx. 5 sec.

*/

result = tpmc600ReadOnAnyEvent(hdl, 0x0000800F, 5000, &inVal);

if (result == TPMC600_OK)

{

 /* event occurred */

}

else

{

 /* handle error */

}

RETURN VALUE

On success, TPMC600_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC600_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC600_ERR_TIMEOUT The event did not occur in the specified time

TPMC600-SW-82 – Linux Device Driver Page 29 of 34

3.2.8 tpmc600ReadOnHighEvent

NAME

tpmc600ReadOnHighEvent – wait for 1st low-to-high transition on set of input lines and return input
state

SYNOPSIS

TPMC600_STATUS tpmc600ReadOnHighEvent
(

TPMC600_HANDLE hdl,
unsigned int inputMask,
int msTimeout,
unsigned int *pDigInVal

)

DESCRIPTION

This function waits for the first low-to-high transition on any of the specified input lines. After detection
of the transition the input state will be read and returned.

There is a delay between the transition and actual reading of the input state. This means that
the returned value represents the input state a short time after the transition has occurred.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

inputMask

This argument specifies a mask of input lines that are active to wait for a transition. A set bit
specifies an active input line. Input lines set to 0 will not be observed. Bit 0 is assigned to IN1,
bit 1 to IN2, and so on.

msTimeout

This argument specifies the maximum time in milliseconds the function will wait for the specified
event. If the time elapses without the event occurred, the function will return with an adequate
error. A value of -1 specifies that the function never times out.

pDigInVal

This argument points to a buffer where the state of the input lines will be returned. Bit 0 of the
returned value represents the state of IN1, bit 1 of IN2, and so on. If a module variant is used,
supporting less than 32 input lines, the unused bits will be set to 0.

TPMC600-SW-82 – Linux Device Driver Page 30 of 34

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

TPMC600_STATUS result;

unsigned int inVal;

/*

** read input state after 1st transition (low-to-high)

** on IN1, IN2, IN3, IN4, or IN16

** timeout after approx. 5 sec.

*/

result = tpmc600ReadOnHighEvent(hdl, 0x0000800F, 5000, &inVal);

if (result == TPMC600_OK)

{

 /* event occurred */

}

else

{

 /* handle error */

}

RETURN VALUE

On success, TPMC600_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC600_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC600_ERR_TIMEOUT The event did not occur in the specified time

TPMC600-SW-82 – Linux Device Driver Page 31 of 34

3.2.9 tpmc600ReadOnLowEvent

NAME

tpmc600ReadOnLowEvent – wait for 1st high-to-low transition on set of input lines and return input
state

SYNOPSIS

TPMC600_STATUS tpmc600ReadOnLowEvent
(

TPMC600_HANDLE hdl,
unsigned int inputMask,
int msTimeout,
unsigned int *pDigInVal

)

DESCRIPTION

This function waits for the first high-to-low transition on any of the specified input lines. After detection
of the transition the input state will be read and returned.

There is a delay between the transition and actual reading of the input state. This means that
the returned value represents the input state a short time after the transition has occurred.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

inputMask

This argument specifies a mask of input lines that are active to wait for a transition. A set bit
specifies an active input line. Input lines set to 0 will not be observed. Bit 0 is assigned to IN1,
bit 1 to IN2, and so on.

msTimeout

This argument specifies the maximum time in milliseconds the function will wait for the specified
event. If the time elapses without the event occurred, the function will return with an adequate
error. A value of -1 specifies that the function never times out.

TPMC600-SW-82 – Linux Device Driver Page 32 of 34

pDigInVal

This argument points to a buffer where the state of the input lines will be returned. Bit 0 of the
returned value represents the state of IN1, bit 1 of IN2, and so on. If a module variant is used,
supporting less than 32 input lines, the unused bits will be set to 0.

EXAMPLE

#include “tpmc600api.h”

TPMC600_HANDLE hdl;

TPMC600_STATUS result;

unsigned int inVal;

/*

** read input state after 1st transition (high-to-low)

** on IN1, IN2, IN3, IN4, or IN16

** timeout after approx. 5 sec.

*/

result = tpmc600ReadOnLowEvent(hdl, 0x0000800F, 5000, &inVal);

if (result == TPMC600_OK)

{

 /* event occurred */

}

else

{

 /* handle error */

}

RETURN VALUE

On success, TPMC600_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC600_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC600_ERR_TIMEOUT The event did not occur in the specified time

TPMC600-SW-82 – Linux Device Driver Page 33 of 34

4 Diagnostic
If the TPMC600 does not work properly it is helpful to get some status information from the driver
respective kernel.

The Linux /proc file system provides information about kernel, resources, drivers, devices and so on.
The following screen dumps display information of a correct running TPMC600 device driver (see also
the proc man pages).

lspci -v

…

04:02.0 Signal processing controller: TEWS Technologies GmbH Device 0258
(rev 01)

 Subsystem: TEWS Technologies GmbH Device 000a

 Flags: medium devsel, IRQ 17

 Memory at feb9f400 (32-bit, non-prefetchable) [size=128]

 I/O ports at e800 [size=128]

 Memory at feb9f000 (32-bit, non-prefetchable) [size=32]

 Kernel driver in use: TEWS Technologies TPMC600 16(8) Digital IO

 Kernel modules: tpmc600drv

cat /proc/devices

Character devices:

 1 mem

 …

248 tpmc600drv

 …

cat /proc/ioports

0000-0cf7 : PCI Bus 0000:00

 0000-001f : dma1

 0020-0021 : pic1

 …

 e000-efff : PCI Bus 0000:04

 e800-e87f : 0000:04:02.0

 e880-e8ff : 0000:04:01.0

 ec00-ec3f : 0000:04:00.0

 …

TPMC600-SW-82 – Linux Device Driver Page 34 of 34

cat /proc/iomem

00000000-00000fff : Reserved

00001000-0009fbff : System RAM

0009fc00-0009ffff : Reserved

…

 feb00000-febfffff : PCI Bus 0000:04

 feb9f000-feb9f01f : 0000:04:02.0

 feb9f400-feb9f47f : 0000:04:02.0

 feba0000-febbffff : 0000:04:00.0

 febc0000-febdffff : 0000:04:00.0

…

cat /proc/interrupts

 CPU0 … CPUn

 0: 107 … 0 IO-APIC 2-edge timer

 1: 0 … 11 IO-APIC 1-edge i8042

 8: 1 … 0 IO-APIC 8-edge rtc0

 9: 0 … 0 IO-APIC 9-fasteoi acpi

 …

 17: 0 … 0 IO-APIC 17-fasteoi TPMC600

	1 Introduction
	2 Installation
	2.1 Build and install the Device Driver
	2.2 Uninstall the Device Driver
	2.3 Install the Device Driver into a running Kernel
	2.4 Remove the Device Driver from a running Kernel
	2.5 Change Major Device Number
	2.6 Maximum Number of Active Jobs Configuration

	3 API Documentation
	3.1 General Functions
	3.1.1 tpmc600Open
	3.1.2 tpmc600Close
	3.1.3 tpmc600GetPciInfo

	3.2 Device Access Functions
	3.2.1 tpmc600Read
	3.2.2 tpmc600EnableDebouncer
	3.2.3 tpmc600DisableDebouncer
	3.2.4 tpmc600WaitForAnyEvent
	3.2.5 tpmc600WaitForHighEvent
	3.2.6 tpmc600WaitForLowEvent
	3.2.7 tpmc600ReadOnAnyEvent
	3.2.8 tpmc600ReadOnHighEvent
	3.2.9 tpmc600ReadOnLowEvent

	4 Diagnostic

