
The Embedded I/O Company

TPMC680-S
QNX6 - Neutrino De

8 x 8 Bit Digital Inputs

Version 1.0.x

User Manu

Issue 1.0.1

June 2012

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-95
vice Driver

/Outputs

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 2 of 33

TPMC680-SW-95

QNX6 - Neutrino Device Driver

8 x 8 Bit Digital Inputs/Outputs

Supported Modules:
TPMC680-10

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2005-2012 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue June 1, 2005

1.0.1 General Revision June 25, 2012

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 3 of 33

Table of Contents

1 INTRODUCTION... 4

2 INSTALLATION.. 5

2.1 Build the Device Driver...5

2.2 Build the Example Application ..5

2.3 Start the Driver Process ...6

2.4 Receive and Transmit FIFO Configuration...6

2.5 Application Interface Configuration..7

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8

3.1 open..8

3.2 close ...10

3.3 devctl..11

3.3.1 DCMD_TP680_SET_MODE ...13
3.3.2 DCMD_TP680_GET_8BIT_PORT ..16
3.3.3 DCMD_TP680_SET_8BIT_PORT...18
3.3.4 DCMD_TP680_READ_16BIT_DATA..20
3.3.5 DCMD_TP680_WRITE_16BIT_DATA ..22
3.3.6 DCMD_TP680_READ_32BIT_DATA..24
3.3.7 DCMD_TP680_WRITE_32BIT_DATA ..26
3.3.8 DCMD_TP680_GET_64BIT_PORT ..28
3.3.9 DCMD_TP680_SET_64BIT_PORT...30
3.3.10 DCMD_TP680_EVENT_WAIT ..32

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 4 of 33

1 Introduction
The TPMC680-SW-95 QNX-Neutrino device driver allows the operation of the TPMC680-10 on QNX-
Neutrino operating systems.

The TPMC680 device driver is basically implemented as a user installable Resource Manager. The
standard file (I/O) functions (open, close and devctl) provide the basic interface for opening and
closing a file descriptor and for performing device I/O and control operations.

The TPMC680-SW-95 device driver supports the following features:

 Configuring ports to work as 8-, 16-, 32- and 64 bit ports.
 Configuring port direction
 Setting I/O line output in 8- and 64-bit configuration
 Getting I/O line input in 8- and 64-bit configuration
 Receiving data via 16- or 32-bit handshake ports
 Transmitting data via 16- or 32-bit handshake ports
 Wait for input events on I/O lines of 8- and 64-bit ports

The TPMC680-SW-95 device driver supports the modules listed below:

TPMC680-10 8 x 8 Bit Digital Inputs/Outputs (PMC)

To get more information about the features and use of TPMC680 devices it is recommended to read
the manuals listed below.

TPMC680 User manual

TPMC680 Engineering Manual

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 5 of 33

2 Installation
Following files are located in the directory TPMC680-SW-95 on the distribution media:

TPMC680-SW-95-SRC.tar.gz GZIP compressed archive with driver source code
TPMC680-SW-95-1.0.1.pdf This manual in PDF format
ChangeLog.txt Release history
Release.txt Information about the Device Driver Release

The GZIP compressed archive TPMC680-SW-95-SRC.tar.gz contains the following files and
directories:

Directory path ‘tpmc680’:

/driver/tpmc680.c Driver source code
/driver/tpmc680.h Definitions and data structures for driver and application
/driver/tpmc680def.h Device driver include
/driver/node.c Queue management source code
/driver/node.h Queue management definitions
/driver/nto/* Build path
/example/tpmc680exa.c Example application
/example/nto/* Build path

For installation copy the tar-archive into the /usr/src directory and unpack it (e.g. tar –xzvf
TPMC680-SW-95-SRC.tar.gz). After that the necessary directory structure for the automatic build
and the source files are available underneath the new directory called tpmc680.

It is absolutely important to extract the TPMC680 archive in the /usr/src directory. Otherwise
the automatic build with make will fail.

2.1 Build the Device Driver

Change to the /usr/src/tpmc680/driver directory

Execute the Makefile:

make install

After successful completion the driver binary (tpmc680) will be installed in the /bin directory.

2.2 Build the Example Application

Change to the /usr/src/tpmc680/example directory

Execute the Makefile:

make install

After successful completion the example binary (tpmc680exa) will be installed in the /bin directory.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 6 of 33

2.3 Start the Driver Process

To start the TPMC680 device driver, you have to enter the process name with optional parameter from
the command shell or in the startup script.

Possible parameters are:

-v

For debugging purposes you can start the TPMC680 Resource Manager with the –v option. The
Resource Manager will print versatile information about TPMC680 configuration and command
execution on the terminal window.

Example:

The following startup call will start the TPMC680 device driver in verbose mode:

tpmc680 –v &

After the TPMC680 Resource Manager is started, it creates and registers a device for each found
supported hardware module. The devices are named /dev/tpmc680_x, where x is the index of the
found TPMC680.

/dev/tpmc680_0

/dev/tpmc680_1

...

/dev/tpmc680_x

This pathname must be used in the application program to open a path to the desired TPMC680.

fd = open(“/dev/tpmc680_0”, O_RDWR);

2.4 Receive and Transmit FIFO Configuration

The size of receive and transmit FIFO can be configured in tpmc680def.h. The values of the following
definition can be adapted.

TP680_IOBUFSIZE16

Defines the depth of the FIFOs for port 0 and port 2 used for 16-bit handshake mode. The value
specifies the number 16-bit words.

TP680_IOBUFSIZE32

Defines the depth of the FIFO for port 0 used for 32-bit handshake mode. The value specifies
the number 32-bit words.

After changing any of the values, the driver has to be rebuilt.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 7 of 33

2.5 Application Interface Configuration

The size of read and write buffers can be configured in tpmc680.h. The values of the following
definition can be adapted.

TP680_MAX_16BIT_ELEM

Defines the maximum number of 16-bit words which can be read or written at once.

TP680_MAX_32BIT_ELEM

Defines the maximum number of 32-bit words which can be read or written at once.

After changing any of the values, the driver and application has to be rebuilt.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 8 of 33

3 Device Input/Output Functions
This chapter describes the interface to the device driver I/O system.

3.1 open

NAME

open - open a file descriptor

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *pathname, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the TPMC680 named by pathname.
The flags argument controls how the file is to be opened (must be O_RDWR for TPMC680 devices).

EXAMPLE

int fd;

fd = open(“/dev/tpmc680_0”, O_RDWR);

if (fd == -1)

{

/* handle error */

}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

ERRORS

Returns only QNX specific error codes, see QNX Neutrino Library Reference.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 9 of 33

SEE ALSO

Library Reference - open()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 10 of 33

3.2 close

NAME

close – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0)

{

/* handle close error conditions */

}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

Returns only QNX specific error codes, see QNX Neutrino Library Reference.

SEE ALSO

Library Reference - close()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 11 of 33

3.3 devctl

NAME

devctl – device control functions

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>
#include <devctl.h>

int devctl
(

int filedes,
int dcmd,
void *data_ptr,
size_t n_bytes,
int *dev_info_ptr

)

DESCRIPTION

The devctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument dcmd specifies the control code for the operation.

The arguments data_ptr and n_bytes depends on the command and will be described for each
command in detail later in this chapter. Usually data_ptr points to a buffer that passes data between
the user task and the driver and n_bytes defines the size of this buffer.

The argument dev_info_ptr is unused for the TPMC680 driver and should be set to NULL.

The following devctl command codes are defined in tpmc680.h:

Value Description

DCMD_TP680_SET_MODE Configure port direction, size and mode.

DCMD_TP680_GET_8BIT_PORT Get input value of a specified 8-bit port.

DCMD_TP680_SET_8BIT_PORT Set value of a specified 8-bit output port.

DCMD_TP680_READ_16BIT_DATA Read data received on a specified 16-bit input port.

DCMD_TP680_WRITE_16BIT_DATA Send data via a specified 16-bit output port.

DCMD_TP680_READ_32BIT_DATA Read data received on the 32-bit input port.

DCMD_TP680_WRITE_32BIT_DATA Send data via the 32-bit output port.

DCMD_TP680_GET_64BIT_PORT Get input value of all 64 I/O lines.

DCMD_TP680_SET_64BIT_PORT Set value to all 64 output lines.

DCMD_TP680_EVENT_WAIT Wait for a specified event on a specified input line.

See behind for more detailed information on each control code.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 12 of 33

To use these TPMC680 specific control codes, the header file tpmc680.h must be included by
the application.

RETURNS

On success, EOK is returned. In the case of an error, the appropriate error code is returned by the
function (not in errno!).

ERRORS

Returns only Neutrino specific error codes, see Neutrino Library Reference.

Other function dependent error codes will be described for each devctl code separately. Note, the
TPMC680 driver always returns standard QNX error codes.

SEE ALSO

Library Reference - devctl()

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 13 of 33

3.3.1 DCMD_TP680_SET_MODE

NAME

DCMD_TP680_SET_MODE – Configure port direction, size and mode

DESCRIPTION

This function configures direction, size and mode of a specified port of the associated device. A
pointer to the caller’s configuration buffer (TP680_SET_MODE_BUF) and the size of this structure are
passed by the parameters data_ptr and n_bytes to the device.

typedef struct

{

int port;

unsigned int direction;

unsigned int mode;

unsigned int hsFlags;

} TP680_SET_MODE_BUF, *PTP680_SET_MODE_BUF;

port

This value specifies the port that should be configured. Valid port numbers are 0 up to 7. Some
ports cannot be configured to all modes.

direction

This value specifies the port direction. Dependent on the module some configurations are not
allowed. The following values are defined:

Value Description

TP680_IO_DIR_IN configures the port as input port

TP680_IO_DIR_OUT configures the port for output

mode

This value specifies the mode (width) of the port. Some mode changes will disconnect ports
from the specified one. All disconnected ports will be set to 8-bit byte input mode. The following
modes are predefined:

Value Description

TP680_IO_MODE_BYTE configures the port as an 8-bit byte I/O port

TP680_IO_MODE_HS16BIT configures the port to work in 16-bit handshake mode

TP680_IO_MODE_HS32BIT configures the port to work in 32-bit handshake mode

TP680_IO_MODE_SYNCHRON configures the port to work in 64-bit synchronous byte
I/O mode

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 14 of 33

hsFlags

This argument specifies the handshake mode and FIFO event. A handshake mode and a
handshake event can be ORed.
The following values are defined for valid interrupt modes:

Value Description

TP680_IO_HSFLAG_NO No handshake output signal

TP680_IO_HSFLAG_INTERLOCKED Output handshake is generated in interlocked
mode

TP680_IO_HSFLAG_PULSED Output handshake is generated in pulsed mode

The following values are defined for FIFO events:

Value Description

TP680_IO_HSFIFOEV_NOTFULL The FIFO event is generated if the FIFO is not
filled.

TP680_IO_HSFIFOEV_EMPTY The FIFO event is generated if the FIFO is empty.

Please refer to the User Manual of TPMC680 to understand all modes and dependencies.

EXAMPLE

#include “tpmc680.h”

int fd;

int result;

TP680_SET_MODE_BUF modeBuf;

/* Configure Port 2 for 16-bit HS output */

/* - interlocked mode */

/* - FIFO event on buffer empty */

modeBuf.port = 2;

modeBuf.direction = TP680_IO_DIR_OUT;

modeBuf.mode = TP680_IO_MODE_HS16BIT;

modeBuf.hsFlags = TP680_IO_HSFLAG_INTERLOCKED | TP680_IO_HSFIFOEV_EMPTY;

result = devctl(fd,

DCMD_TP680_SET_MODE,

&modeBuf,

sizeof(modeBuf),

NULL);

if (result != EOK)

{

/* process devctl() error */

}

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 15 of 33

ERRORS

Error Code Description

EINVAL A specified argument value is invalid.

ECHRNG The port number is out of range or the port number is not valid for
the specified configuration.

EACCES The port cannot be accessed. It is connected to another port.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 16 of 33

3.3.2 DCMD_TP680_GET_8BIT_PORT

NAME

DCMD_TP680_GET_8BIT_PORT – Get value of an 8-bit port

DESCRIPTION

This function reads the current value of a specified 8-bit port of the associated device. A pointer to a
caller’s 8-bit buffer (TP680_8BIT_PORT_BUF) and the size of this structure are passed by the
parameters data_ptr and n_bytes to the device.

typedef struct

{

int port;

unsigned char value;

} TP680_8BIT_PORT_BUF;

port

This value specifies the port that should be read. Valid port numbers are 0 up to 7. The port
must be in byte mode.

value

This is the parameter where the input value will be stored to.

The lower two bits of port 4 and port 5 are set to zero, if the associated pins are used for
handshake.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 17 of 33

EXAMPLE

#include “tpmc680.h”

int fd;

int result;

TP680_8BIT_PORT_BUF byteBuf;

/* Read current state of port 2 input */

byteBuf.port = 2;

result = devctl(fd,

DCMD_TP680_GET_8BIT_PORT,

&byteBuf,

sizeof(byteBuf),

NULL);

if (result == EOK)

{

printf(“INPUT: %02Xh\n”, byteBuf.value);

} else {

/* process devctl() error */

}

ERRORS

Error Code Description

ECHRNG The port number is out of range.

EACCES The port cannot be accessed. It is not configured for 8-bit byte
access.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 18 of 33

3.3.3 DCMD_TP680_SET_8BIT_PORT

NAME

DCMD_TP680_SET_8BIT_PORT – Set value to an 8-bit output port

DESCRIPTION

This function sets the current value of a specified 8-bit output port of the associated device. A pointer
to a caller’s 8-bit buffer (TP680_8BIT_PORT_BUF) and the size of this structure are passed by the
parameters data_ptr and n_bytes to the device.

typedef struct

{

int port;

unsigned char value;

} TP680_8BIT_PORT_BUF;

port

This value specifies the port that should be changed. Valid port numbers are 0 up to 7. The port
must be in byte output mode.

value

This parameter specifies the new output value.

The lower two bits of port 4 and port 5 are ignored, if the associated pins are used for
handshake.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 19 of 33

EXAMPLE

#include “tpmc680.h”

int fd;

int result;

TP680_8BIT_PORT_BUF byteBuf;

/* Set port 2 to 0x12 */

byteBuf.port = 2;

byteBuf.value = 0x12;

result = devctl(fd,

DCMD_TP680_SET_8BIT_PORT,

&byteBuf,

sizeof(byteBuf),

NULL);

if (result != EOK)

{

/* process devctl() error */

}

ERRORS

Error Code Description

ECHRNG The port number is out of range.

EACCES The port cannot be accessed. It is not configured for 8-bit byte
access.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 20 of 33

3.3.4 DCMD_TP680_READ_16BIT_DATA

NAME

DCMD_TP680_READ_16BIT_DATA – Read data from 16-bit input port

DESCRIPTION

This function reads received data from a specified 16-bit input port of the associated device. A pointer
to a caller’s 16-bit buffer (TP680_16BIT_BUF) and the size of this structure are passed by the
parameters data_ptr and n_bytes to the device.

The data structure has a fixed size. It is configured with the definition of TP680_MAX_16BIT_ELEM.
This definition sets the maximum number of 16-bit words that can be read with one call.

It is possible to fill up a partially filled buffer, by simply recalling DCMD_TP680_READ_16BIT_DATA
with the same buffer, without changing any values. This may be necessary to get packets of a fixed
length.

The function always returns data that are stored in the receive FIFO, it will not wait until data is
available.

typedef struct

{

int port;

int maxElements;

int usedElements;

unsigned short value[TP680_MAX_16BIT_ELEM];

} TP680_16BIT_BUF;

port

This value specifies the port the data should be read from. Valid port numbers for this function
are 0 and 2. The port must be in 16-bit handshake input mode.

maxElements

This value specifies the number of 16-bit values that will be filled into the buffer at maximum.
This value may differ from the definition TP680_MAX_16BIT_ELEM, but must not be greater.

used Elements

This value returns the number of received 16-bit data words in the buffer. This value should be
set 0 before calling the function, or it should keep the returned value, if the buffer should be
filled up with the next call.

value

This is the buffer where the received data will be copied to.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 21 of 33

EXAMPLE

#include “tpmc680.h”

int fd;

int result;

TP680_16BIT_BUF inputBuf;

/* Read a block of 20 words from port 0, */

/* retry until 20 words are received */

inputBuf.port = 0;

inputBuf.maxElement = 20;

inputBuf.usedElements = 0;

do

{

result = devctl(fd,

DCMD_TP680_READ_16BIT_DATA,

&inputBuf,

sizeof(inputBuf),

NULL);

if (result != EOK)

{

/* process devctl() error */

break;

}

} while (inputBuf.usedElements < 20);

/* 20 words of data received */

ERRORS

Error Code Description

ECHRNG The port number is out of range, the port number is not allowed.

EACCES The port cannot be accessed. It is not configured for 16-bit
handshake input access.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 22 of 33

3.3.5 DCMD_TP680_WRITE_16BIT_DATA

NAME

DCMD_TP680_WRITE_16BIT_DATA – Write data to 16-bit output port

DESCRIPTION

This function writes data to a specified 16-bit output port of the associated device. A pointer to a
caller’s 16-bit buffer (TP680_16BIT_BUF) and the size of this structure are passed by the parameters
data_ptr and n_bytes to the device.

The data structure has a fixed size. It is configured with the definition of TP680_MAX_16BIT_ELEM.
This definition sets the maximum number of 16-bit words that can be written with one call.

It is possible to retry sending a partially sent buffer, by recalling DCMD_TP680_WRITE_16BIT_DATA
with the same buffer, without changing any values. This makes it easier to send packets of a fixed
length.

The function copies the supplied data into the driver’s FIFO. It will not wait until data is sent. The
function returns immediately when all data is copied into the FIFO or the FIFO is filled.

typedef struct

{

int port;

int maxElements;

int usedElements;

unsigned short value[TP680_MAX_16BIT_ELEM];

} TP680_16BIT_BUF;

port

This value specifies the port the data should be sent to. Valid port numbers for this function are
0 and 2. The port must be in 16-bit handshake output mode.

maxElements

This value specifies the number of 16-bit values that are stored into the buffer and shall be sent.
This value may differ from the definition TP680_MAX_16BIT_ELEM, but must not be greater.

used Elements

This value returns the number of transmitted 16-bit data words that have been copied into the
transmit FIFO. This value should be set 0 before calling the function or it should keep the
previously returned value if unsent data should be sent with a recall of the function.

value

This is the data buffer that should be sent.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 23 of 33

EXAMPLE

#include “tpmc680.h”

int fd;

int result;

TP680_16BIT_BUF outputBuf;

/* Send a block of 20 words from port 2, */

/* retry until 20 words are written */

outputBuf.port = 2;

outputBuf.maxElement = 20;

outputBuf.usedElements = 0;

/* Fill up data */

outputBuf.value[0] = 0x1234;

…

outputBuf.value[19] = 0x4321;

do

{

result = devctl(fd,

DCMD_TP680_WRITE_16BIT_DATA,

&outputBuf,

sizeof(outputBuf),

NULL);

if (result != EOK)

{

/* process devctl() error */

break;

}

} while (outputBuf.usedElements < 20);

/* 20 words of data sent */

ERRORS

Error Code Description

ECHRNG The port number is out of range, the port number is not allowed.

EACCES The port cannot be accessed. It is not configured for 16-bit
handshake output access.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 24 of 33

3.3.6 DCMD_TP680_READ_32BIT_DATA

NAME

DCMD_TP680_READ_32BIT_DATA – Read data from 32-bit input port

DESCRIPTION

This function reads received data from the 32-bit input port of the associated device. A pointer to a
caller’s 32-bit buffer (TP680_32BIT_BUF) and the size of this structure are passed by the parameters
data_ptr and n_bytes to the device.

The data structure has a fixed size. It is configured with the definition of TP680_MAX_32BIT_ELEM.
This definition sets the maximum number of 32-bit words that can be read with one call.

It is possible to fill up a partially filled buffer, by simply recalling DCMD_TP680_READ_32BIT_DATA
with the same buffer, without changing any values. This may be necessary to get packets of a fixed
length.

The function always returns data that are stored in the receive FIFO, it will not wait until data is
available.

typedef struct

{

int maxElements;

int usedElements;

unsigned int value[TP680_MAX_32BIT_ELEM];

} TP680_32BIT_BUF;

maxElements

This value specifies the number of 32-bit values that will be filled into the buffer at maximum.
This value may differ from the definition TP680_MAX_32BIT_ELEM, but must not be greater.

used Elements

This value returns the number of received 32-bit data words in the buffer. This value should be
set 0 before calling the function, or it should keep the returned value, if the buffer should be
filled up with the next call.

value

This is the buffer where the received data will be copied to.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 25 of 33

EXAMPLE

#include “tpmc680.h”

int fd;

int result;

TP680_32BIT_BUF inputBuf;

/* Read a block of 20 longwords from 32-bit, */

/* retry until 20 longwords are received */

inputBuf.maxElement = 20;

inputBuf.usedElements = 0;

do

{

result = devctl(fd,

DCMD_TP680_READ_32BIT_DATA,

&inputBuf,

sizeof(inputBuf),

NULL);

if (result != EOK)

{

/* process devctl() error */

break;

}

} while (inputBuf.usedElements < 20);

/* 20 longwords of data received */

ERRORS

Error Code Description

EACCES The port cannot be accessed. It is not configured for 32-bit
handshake input access.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 26 of 33

3.3.7 DCMD_TP680_WRITE_32BIT_DATA

NAME

DCMD_TP680_WRITE_32BIT_DATA – Write data to 32-bit output port

DESCRIPTION

This function writes data to the 32-bit output port of the associated device. A pointer to a caller’s 32-bit
buffer (TP680_32BIT_BUF) and the size of this structure are passed by the parameters data_ptr and
n_bytes to the device.

The data structure has a fixed size. It is configured with the definition of TP680_MAX_32BIT_ELEM.
This definition sets the maximum number of 32-bit words that can be written with one call.

It is possible to retry sending a partially sent buffer, by recalling DCMD_TP680_WRITE_32BIT_DATA
with the same buffer, without changing any values. This makes it easier to send packets of a fixed
length.

The function copies the supplied data into the driver’s FIFO. It will not wait until data is sent. The
function returns immediately when all data is copied into the FIFO or the FIFO is filled.

typedef struct

{

int maxElements;

int usedElements;

unsigned int value[TP680_MAX_32BIT_ELEM];

} TP680_32BIT_BUF;

maxElements

This value specifies the number of 32-bit values that are stored in the buffer and shall be sent.
This value may differ from the definition TP680_MAX_32BIT_ELEM, but must not be greater.

used Elements

This value returns the number of transmitted 32-bit data words that have been copied into the
transmit FIFO. This value should be set 0 before calling the function or it should keep the
previously returned value if unsent data should be sent with a recall of the function.

value

This is the data buffer that should be sent.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 27 of 33

EXAMPLE

#include “tpmc680.h”

int fd;

int result;

TP680_32BIT_BUF outputBuf;

/* Send a block of 20 longwords, */

/* retry until 20 longwords are written */

outputBuf.maxElement = 20;

outputBuf.usedElements = 0;

/* Fill up data */

outputBuf.value[0] = 0x12345678;

…

outputBuf.value[19] = 0x87654321;

do

{

result = devctl(fd,

DCMD_TP680_WRITE_32BIT_DATA,

&outputBuf,

sizeof(outputBuf),

NULL);

if (result != EOK)

{

/* process devctl() error */

break;

}

} while (outputBuf.usedElements < 20);

/* 20 longwords of data sent */

ERRORS

Error Code Description

EACCES The port cannot be accessed. It is not configured for 32-bit
handshake output access.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 28 of 33

3.3.8 DCMD_TP680_GET_64BIT_PORT

NAME

DCMD_TP680_GET_64BIT_PORT – Get values of all 64 I/O lines

DESCRIPTION

This function reads the current value of all 64 I/O lines of the associated device. A pointer to a callers
buffer (TP680_64BIT_PORT_BUF) and the size of this structure are passed by the parameters
data_ptr and n_bytes to the device.

typedef struct

{

unsigned int value_31_0;

unsigned int value_63_32;

} TP680_64BIT_PORT_BUF;

value_31_0

This argument returns the current state of I/O line 0 up to 31.

value_63_32

This argument returns the current state of I/O line 32 up to 63.

EXAMPLE

#include “tpmc680.h”

int fd;

int result;

TP680_64BIT_PORT_BUF inBuf;

/* Read actual state the I/O lines */

result = devctl(fd,

DCMD_TP680_GET_64BIT_PORT,

&inBuf,

sizeof(inBuf),

NULL);

if (result == EOK)

{

printf(“INPUT: %08X %08X h\n”, inBuf.value_64_32, inBuf.value_31_0);

} else {

/* process devctl() error */

}

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 29 of 33

ERRORS

Error Code Description

EACCES The port cannot be accessed. It is not configured for 64-bit input
mode.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 30 of 33

3.3.9 DCMD_TP680_SET_64BIT_PORT

NAME

DCMD_TP680_SET_64BIT_PORT – Set values of all 64 output lines

DESCRIPTION

This function sets all 64 output lines of the associated device. A pointer to a caller’s buffer
(TP680_64BIT_PORT_BUF) and the size of this structure are passed by the parameters data_ptr and
n_bytes to the device.

typedef struct

{

unsigned int value_31_0;

unsigned int value_63_32;

} TP680_64BIT_PORT_BUF;

value_31_0

This argument specifies the new output value of output line 0 up to 31.

value_63_32

This argument specifies the new output value of output line 32 up to 63.

EXAMPLE

#include “tpmc680.h”

int fd;

int result;

TP680_64BIT_PORT_BUF outBuf;

/* Set all output lines to 0 */

outBuf.value_31_0 = 0;

outBuf.value_63_32 = 0;

result = devctl(fd,

DCMD_TP680_SET_64BIT_PORT,

&outBuf,

sizeof(outBuf),

NULL);

if (result != EOK)

{

/* process devctl() error */

}

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 31 of 33

ERRORS

Error Code Description

EACCES The port cannot be accessed. It is not configured for 64-bit output
mode.

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 32 of 33

3.3.10 DCMD_TP680_EVENT_WAIT

NAME

DCMD_TP680_EVENT_WAIT – Wait for a specified input transition

DESCRIPTION

This function waits for an input transition on a specified I/O line of the associated device. A pointer to a
caller’s buffer (TP680_EVENT_BUF) and the size of this structure are passed by the parameters
data_ptr and n_bytes to the device.

typedef struct

{

int eventLine;

int eventType;

int eventTimeout;

} TP680_EVENT_BUF;

eventLine

This argument specifies the I/O the event should occur on. Valid values are 0 up to 63.

eventType

This argument specifies the transition type to wait for. The following types are defined in
tpmc680.h:

Value Description

TP680_EV_LO2HI_TRANS Event occurs, if a low to high transition is detected.

TP680_EV_HI2LO_TRANS Event occurs, if a high to low transition is detected.

TP680_EV_ANY_TRANS Event occurs on every transition.

eventTimeout

This parameter specifies the maximum time to wait for the specified event. If the specified time
has occurred, the call will return with an error. The time is specified in seconds. A value of -1
means, that no timeout is used (wait indefinitely).

TPMC680-SW-95 – QNX6 - Neutrino Device Driver Page 33 of 33

EXAMPLE

#include “tpmc680.h”

int fd;

int result;

TP680_EVENT_BUF eventBuf;

/* Wait for a high to low transition on I/O line 17, */

/* timeout after 20 seconds */

eventBuf.eventLine = 17;

eventBuf.eventType = TP680_EV_HI2LO_TRANS;

eventBuf.eventTimeout = 20;

result = devctl(fd,

DCMD_TP680_EVENT_WAIT,

&eventBuf,

sizeof(eventBuf),

NULL);

if (result != EOK)

{

/* process devctl() error */

}

ERRORS

Error Code Description

EACCES The I/O line is configured for handshake mode and cannot be
used.

ECHRNG The specified I/O line number is out of range.

EINVAL The transition type is invalid.

EBUSY There is already a wait active on the specified I/O line.

ETIMEDOUT The call has timed out.

	1	Introduction
	2	Installation
	2.1	Build the Device Driver
	2.2	Build the Example Application
	2.3	Start the Driver Process
	2.4	Receive and Transmit FIFO Configuration
	2.5	Application Interface Configuration

	3	Device Input/Output Functions
	3.1	open
	3.2	close
	3.3	devctl
	3.3.1	DCMD_TP680_SET_MODE
	3.3.2	DCMD_TP680_GET_8BIT_PORT
	3.3.3	DCMD_TP680_SET_8BIT_PORT
	3.3.4	DCMD_TP680_READ_16BIT_DATA
	3.3.5	DCMD_TP680_WRITE_16BIT_DATA
	3.3.6	DCMD_TP680_READ_32BIT_DATA
	3.3.7	DCMD_TP680_WRITE_32BIT_DATA
	3.3.8	DCMD_TP680_GET_64BIT_PORT
	3.3.9	DCMD_TP680_SET_64BIT_PORT
	3.3.10	DCMD_TP680_EVENT_WAIT

