
The Embedded I/O Company

TPMC700-S
VxWorks Device

32 (16) Digital Ou

Version 4.0.x

User Manu

Issue 4.0.0

April 2016

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-42
Driver

tputs

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC700-SW-42 – VxWorks Device Driver Page 2 of 35

TPMC700-SW-42

VxWorks Device Driver

32 (16) Digital Outputs

Supported Modules:
TPMC700

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

1999-2016 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue 1999

1.1 Intel X86 support added March 11, 2002

1.2 General Revision November 28, 2003

1.2.1 Filelist changed August 11, 2005

2.0.0 Functions tpmc700Drv(), tpmc700DevCreate modified

Filelist changed

March 8, 2007

2.0.1 Modified parameter description for write() February 6, 2009

3.0.0 VxBus support and API added, general revision September 17, 2010

4.0.0 New implementation of API, support of VxWorks 6.9 (SMP and 64-bit) April 25, 2016

TPMC700-SW-42 – VxWorks Device Driver Page 3 of 35

Table of Contents

1 INTRODUCTION... 4

2 INSTALLATION.. 5

Legacy vs. VxBus Driver ..62.1

VxBus Driver Installation ...62.2

2.2.1 Direct BSP Builds ...8
Legacy Driver Installation ..92.3

2.3.1 Include device driver in VxWorks projects..9
2.3.2 Special Installation for Intel x86 based Targets..9
System Resource Requirement...102.4

3 API DOCUMENTATION ... 11

General Functions...113.1

3.1.1 tpmc700Open ...11
3.1.2 tpmc700Close...13
3.1.3 tpmc700GetPciInfo ...15
Output Functions ..183.2

3.2.1 tpmc700Write..18
3.2.2 tpmc700WriteMask ...20
3.2.3 tpmc700OutputLineSet ...22
3.2.4 tpmc700OutputLineClear..24
3.2.5 tpmc700OutputStatus ...26
Watchdog Functions...283.3

3.3.1 tpmc700WatchdogEnable ..28
3.3.2 tpmc700WatchdogDisable..30
3.3.3 tpmc700WatchdogReset ..32

4 LEGACY I/O SYSTEM FUNCTIONS.. 34

tpmc700PciInit...344.1

5 DEBUGGING AND DIAGNOSTIC.. 35

TPMC700-SW-42 – VxWorks Device Driver Page 4 of 35

1 Introduction
The TPMC700-SW-42 VxWorks device driver software allows the operation of the supported PMC
conforming to the VxWorks I/O system specification.

The TPMC700-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled driver model. The VxBus-enabled driver is recommended for new
developments with later VxWorks 6.x releases and mandatory for VxWorks SMP systems.

Both drivers, legacy and VxBus, share the same application programming interface (API).

The TPMC700-SW-42 device driver supports the following features:

 Set Output Lines
 Start and Stop Output Watchdog
 Reset Watchdog Error Flag

The TPMC700-SW-42 supports the modules listed below:

TPMC700-x0 32 Digital Outputs (PMC)

TPMC700-x1 16 Digital Outputs (PMC)

To get more information about the features and use of TPMC700 devices it is recommended to read
the manuals listed below.

TPMC700 User Manual

TPMC700-SW-42 – VxWorks Device Driver Page 5 of 35

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC700-SW-42’:

TPMC700-SW-42-4.0.0.pdf PDF copy of this manual
TPMC700-SW-42-VXBUS.zip Zip compressed archive with VxBus driver sources
TPMC700-SW-42-LEGACY.zip Zip compressed archive with legacy driver sources
ChangeLog.txt Release history
Release.txt Release information

The archive TPMC700-SW-42-VXBUS.zip contains the following files and directories:

Directory path ‘./tews/tpmc700’:

tpmc700drv.c TPMC700 device driver source
tpmc700def.h TPMC700 driver include file
tpmc700.h TPMC700 include file for driver and application
tpmc700api.h TPMC700 API include file
tpmc700api.c TPMC700 API file
Makefile Driver Makefile
40tpmc700.cdf Component description file for VxWorks development tools
tpmc700.dc Configuration stub file for direct BSP builds
tpmc700.dr Configuration stub file for direct BSP builds
include/tvxbHal.h Hardware dependent interface functions and definitions
apps/tpmc700exa.c Example application

The archive TPMC700-SW-42-LEGACY.zip contains the following files and directories:

Directory path ‘./tpmc700’:

tpmc700drv.c TPMC700 device driver source
tpmc700def.h TPMC700 driver include file
tpmc700.h TPMC700 include file for driver and application
tpmc700api.h TPMC700 API include file
tpmc700api.c TPMC700 API file
tpmc700pci.c TPMC700 PCI MMU mapping for Intel x86 based targets
tpmc700exa.c Example application
include/tdhal.h Hardware dependent interface functions and definitions

TPMC700-SW-42 – VxWorks Device Driver Page 6 of 35

Legacy vs. VxBus Driver2.1

In later VxWorks 6.x releases, the old VxWorks 5.x legacy device driver model was replaced by
VxBus-enabled device drivers. Legacy device drivers are tightly coupled with the BSP and the board
hardware. The VxBus infrastructure hides all BSP and hardware differences under a well-defined
interface, which improves the portability and reduces the configuration effort. A further advantage is
the improved performance of API calls by using the method interface and bypassing the VxWorks
basic I/O interface.

VxBus-enabled device drivers are the preferred driver interface for new developments.

The checklist below will help you to make a decision which driver model is suitable and possible for
your application:

Legacy Driver VxBus Driver

 VxWorks 5.x releases

 VxWorks 6.5 and earlier releases

 VxWorks 6.x releases without VxBus
PCI bus support

 VxWorks 6.6 and later releases with
VxBus PCI bus

 SMP systems (only the VxBus driver is
SMP safe!)

 64-bit systems (only the VxBus driver is
64-bit compatible)

TEWS TECHNOLOGIES recommends not using the VxBus Driver before VxWorks release 6.6.
In previous releases required header files are missing and the support for 3

rd
-party drivers may

not be available.

VxBus Driver Installation2.2

Because Wind River doesn’t provide a standard installation method for 3
rd

party VxBus device drivers
the installation procedure needs to be done manually.

In order to perform a manual installation extract all files from the archive TPMC700-SW-42-VXBUS.zip
to the typical 3

rd
party directory installDir/vxworks-6.x/target/3rdparty (whereas installDir must be

substituted by the VxWorks installation directory).

After successful installation the TPMC700 device driver is located in the vendor and driver-specific
directory installDir/vxworks-6.x/target/3rdparty/tews/tpmc700.

At this point the TPMC700 driver is not configurable and cannot be included with the kernel
configuration tool in a Wind River Workbench project. To make the driver configurable the driver library
for the desired processer (CPU) and build tool (TOOL) must be built in the following way:

(1) Open a VxWorks development shell (e.g. C:\WindRiver\wrenv.exe -p vxworks-6.7)

(2) Change into the driver installation directory
installDir/vxworks-6.x/target/3rdparty/tews/tpmc700

(3) Invoke the build command for the required processor and build tool
make CPU=cpuName TOOL=tool

TPMC700-SW-42 – VxWorks Device Driver Page 7 of 35

For Windows hosts this may look like this:

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc700

C:> make CPU=PENTIUM4 TOOL=diab

To build SMP-enabled libraries, the argument VXBUILD=SMP must be added to the command line

> make CPU=PENTIUM4 TOOL=diab VXBUILD=SMP

To build 64-bit libraries, the argument VXBUILD=LP64 must be added to the command line

> make TOOL=gnu CPU=CORE VXBUILD=LP64

For 64-bit SMP-enabled libraries a build command may look like this

> make TOOL=gnu CPU=CORE VXBUILD="LP64 SMP"

To integrate the TPMC700 driver with the VxWorks development tools (Workbench), the component
configuration file 40tpmc700.cdf must be copied to the directory installDir/vxworks-
6.x/target/config/comps/VxWorks.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc700

C:> copy 40tpmc700.cdf \Windriver\vxworks-6.7\target\config\comps\vxWorks

In VxWorks 6.7 and newer releases the kernel configuration tool scans the CDF file automatically and
updates the CxrCat.txt cache file to provide component parameter information for the kernel
configuration tool as long as the timestamp of the copied CDF file is newer than the one of the
CxrCat.txt. If your copy command preserves the timestamp, force to update the timestamp by a utility,
such as touch.

In earlier VxWorks releases the CxrCat.txt file may not be updated automatically. In this case, remove
or rename the original CxrCat.txt file and invoke the make command to force recreation of this file.

C:> cd \Windriver\vxworks-6.7\target\config\comps\vxWorks

C:> del CxrCat.txt

C:> make

After successful completion of all steps above and restart of the Wind River Workbench, the TPMC700
driver can be included in VxWorks projects by selecting the “TEWS TPMC700 Driver“ and the “TEWS
TPMC700 API“ component in the “hardware (default) - Device Drivers” folder with the kernel
configuration tool.

TPMC700-SW-42 – VxWorks Device Driver Page 8 of 35

2.2.1 Direct BSP Builds

In development scenarios with the direct BSP build method without using the Workbench or the vxprj
command-line utility, the TPMC700 configuration stub files must be copied to the directory
installDir/vxworks-6.x/target/config/comps/src/hwif. Afterwards the vxbUsrCmdLine.c file must be
updated by invoking the appropriate make command.

C:> cd \WindRiver\vxworks-6.7\target\3rdparty\tews\tpmc700

C:> copy tpmc700.dc \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> copy tpmc700.dr \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> cd \Windriver\vxworks-6.7\target\config\comps\src\hwif

C:> make vxbUsrCmdLine.c

TPMC700-SW-42 – VxWorks Device Driver Page 9 of 35

Legacy Driver Installation2.3

2.3.1 Include device driver in VxWorks projects

For including the TPMC700-SW-42 device driver into a VxWorks project (e.g. Tornado IDE or
Workbench) follow the steps below:

(1) Extract all files from the archive TPMC700-SW-42-LEGACY.zip to your project directory.

(2) Add the device driver’s C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ...’ topic.
A file select box appears, and the driver files in the tpmc700 directory can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your VxWorks User’s
Guide (e.g. Tornado, Workbench, etc.)

2.3.2 Special Installation for Intel x86 based Targets

The TPMC700 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to I80X86 special Intel x86 conforming code and
function calls will be included.

The second problem for Intel x86 based platforms can’t be solved by conditional compilation
directives. Due to the fact that some Intel x86 BSP’s doesn’t map PCI memory spaces of devices
which are not used by the BSP, the required device memory spaces can’t be accessed.

To solve this problem a MMU mapping entry has to be added for the required TPMC700 PCI memory
spaces prior the MMU initialization (usrMmuInit()) is done.

The C source file tpmc700pci.c contains the function tpmc700PciInit(). This routine finds out all
TPMC700 devices and adds MMU mapping entries for all used PCI memory spaces. Please insert a
call to this function after the PCI initialization is done and prior to MMU initialization (usrMmuInit()).

The right place to call the function tpmc700PciInit() is at the end of the function sysHwInit() in sysLib.c
(it can be opened from the project Files window).

Be sure that the function is called prior to MMU initialization otherwise the TPMC700 PCI spaces
remains unmapped and an access fault occurs during driver initialization.

Please insert the following call at a suitable place in sysLib.c:

tpmc700PciInit();

Modifying the sysLib.c file will change the sysLib.c in the BSP path. Remember this for future
projects and recompilations.

TPMC700-SW-42 – VxWorks Device Driver Page 10 of 35

System Resource Requirement2.4

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver Requirement Devices Requirement

Memory < 1 KB < 1 KB

Stack < 1 KB ---

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

TPMC700-SW-42 – VxWorks Device Driver Page 11 of 35

3 API Documentation

General Functions3.1

3.1.1 tpmc700Open

NAME

tpmc700Open – Opens a device.

SYNOPSIS

TPMC700_HANDLE tpmc700Open
(

char *DeviceName
)

DESCRIPTION

Before I/O can be performed to a device, a device handle must be opened by a call to this function. If
the legacy TPMC700 driver is used, this function will also install the legacy driver and create devices
with the first call. The VxBus TPMC700 driver will be installed automatically by the VxBus system.

The tpmc700Open function can be called multiple times (e.g. in different tasks)

PARAMETERS

DeviceName

This parameter points to a null-terminated string that specifies the name of the device. The first
TPMC700 device is named “/tpmc700/0”, the second device is named “/tpmc700/1” and so on.

TPMC700-SW-42 – VxWorks Device Driver Page 12 of 35

EXAMPLE

#include “tpmc700api.h”

TPMC700_HANDLE hdl;

/*

** open file descriptor to device

*/

hdl = tpmc700Open(“/tpmc700/0”);

if (hdl == NULL)

{

/* handle open error */

}

RETURNS

A device handle, or NULL if the function fails. An error code will be stored in errno.

ERROR CODES

The error codes are stored in errno.

The error code is a standard error code set by the I/O system.

TPMC700-SW-42 – VxWorks Device Driver Page 13 of 35

3.1.2 tpmc700Close

NAME

tpmc700Close – Closes a device.

SYNOPSIS

TPMC700_STATUS tpmc700Close
(

TPMC700_HANDLE hdl
)

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc700api.h”

TPMC700_HANDLE hdl;

TPMC700_STATUS result;

/*

** close file descriptor to device

*/

result = tpmc700Close(hdl);

if (result != TPMC700_OK)

{

/* handle close error */

}

TPMC700-SW-42 – VxWorks Device Driver Page 14 of 35

RETURNS

On success, TPMC700_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC700_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC700-SW-42 – VxWorks Device Driver Page 15 of 35

3.1.3 tpmc700GetPciInfo

NAME

tpmc700GetPciInfo – Get PCI information of the module

SYNOPSIS

TPMC700_STATUS tpmc700GetPciInfo
(

TPMC700_HANDLE hdl,
TPMC700_PCIINFO_BUF *pPciInfoBuf

)

DESCRIPTION

This function returns information about the module’s PCI header as well as the PCI localization.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pPciInfoBuf

This argument is a pointer to the structure TPMC700_PCIINFO_BUF that receives information
of the module PCI header.

typedef struct

{

unsigned short vendorId;

unsigned short deviceId;

unsigned short subSystemId;

unsigned short subSystemVendorId;

int pciBusNo;

int pciDevNo;

int pciFuncNo;

} TPMC700_PCIINFO_BUF;

TPMC700-SW-42 – VxWorks Device Driver Page 16 of 35

vendorId

PCI module vendor ID.

deviceId

PCI module device ID

subSystemId

PCI module sub system ID

subSystemVendorId

PCI module sub system vendor ID

pciBusNo

Number of the PCI bus, where the module resides.

pciDevNo

PCI device number

pciFuncNo

PCI function number

EXAMPLE

#include “tpmc700api.h”

TPMC700_HANDLE hdl;

TPMC700_STATUS result;

TPMC700_PCIINFO_BUF pciInfoBuf;

/*

** get module PCI information

*/

result = tpmc700GetPciInfo(hdl, &pciInfoBuf);

if (result == TPMC700_OK)

{

printf(“PCI Localization (Bus:Dev.Func): %d:%d.%d\n”,

pciInfoBuf.pciBusNo,

pciInfoBuf.pciDevNo,

pciInfoBuf.pciFuncNo);

}

else

{

/* handle error */

}

TPMC700-SW-42 – VxWorks Device Driver Page 17 of 35

RETURN VALUE

On success, TPMC700_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC700_ERR_INVALID_HANDLE The specified device handle is invalid

TPMC700_ERR_INVAL Specified pointer is invalid.

TPMC700-SW-42 – VxWorks Device Driver Page 18 of 35

Output Functions3.2

3.2.1 tpmc700Write

NAME

tpmc700Write – Write Output Value

SYNOPSIS

TPMC700_STATUS tpmc700Write
(

TPMC700_HANDLE hdl,
unsigned int OutputValue

)

DESCRIPTION

This function writes the specified output value (32bit) to the specific module.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OutputValue

This argument specifies the new output value. Bit 0 of the output word corresponds to the first
output line, bit 1 corresponds to the second output line, and so on.

Bit 16 up to 32 will be ignored for TPMC700-x1 (16 output lines).

EXAMPLE

#include “tpmc700api.h”

TPMC700_HANDLE hdl;

TPMC700_STATUS result;

…

TPMC700-SW-42 – VxWorks Device Driver Page 19 of 35

…

/*------------------------------

Set output lines to 0x12345678

------------------------------*/

result = tpmc700Write(hdl,

0x12345678);

if (result != TPMC700_OK)

{

/* handle error */

}

RETURN VALUE

On success, TPMC700_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC700_ERR_INVALID_HANDLE The specified device handle is invalid.

TPMC700_ERR_TIMEOUT Watchdog Timeout error occurred.

TPMC700-SW-42 – VxWorks Device Driver Page 20 of 35

3.2.2 tpmc700WriteMask

NAME

tpmc700WriteMask – Write Output Value with Bitmask

SYNOPSIS

TPMC700_STATUS tpmc700WriteMask
(

TPMC700_HANDLE hdl,
unsigned int OutputValue,
unsigned int Mask

)

DESCRIPTION

This function sets the output lines to the specified value. Only output lines specified by the bitmask are
affected.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OutputValue

This argument specifies the new output value. Bit 0 of the output word corresponds to the first
output line, bit 1 corresponds to the second output line, and so on.

Bit 16 up to 32 will be ignored for TPMC700-x1 (16 output lines).

Mask

This parameter specifies a 32bit mask. ‘1’ means that the corresponding bit in OutputValue will
be updated. ‘0’ bits will be left unchanged. Bit 0 corresponds to the first output line, bit 1
corresponds to the second output line and so on.

Bit 16 up to 32 will be ignored for TPMC700-x1 (16 output lines).

TPMC700-SW-42 – VxWorks Device Driver Page 21 of 35

EXAMPLE

#include “tpmc700api.h”

TPMC700_HANDLE hdl;

TPMC700_STATUS result;

unsigned int OutputValue;

unsigned int Mask;

/*---

Set output line 1 and 8 (bit 0 and bit 7), and

clear output line 32 (bit 31)

---*/

OutputValue = (1 << 7) | (1 << 0);

Mask = (1 << 31) | (1 << 7) | (1 << 0);

result = tpmc700WriteMask(hdl,

OutputValue,

Mask);

if (result != TPMC700_OK)

{

/* handle error */

}

RETURN VALUE

On success, TPMC700_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC700_ERR_INVALID_HANDLE The specified device handle is invalid.

TPMC700_ERR_TIMEOUT Watchdog Timeout error occurred.

TPMC700-SW-42 – VxWorks Device Driver Page 22 of 35

3.2.3 tpmc700OutputLineSet

NAME

tpmc700OutputLineSet – Set the specific Output Line

SYNOPSIS

TPMC700_STATUS tpmc700OutputLineSet
(

TPMC700_HANDLE hdl,
int OutputLine

)

DESCRIPTION

This function sets the specified output line to ‘1’.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OutputLine

This argument specifies the output line number which shall be set. Valid values are 1 to 32. For
TPMC700-x1 modules, values higher than 16 are ignored.

EXAMPLE

#include “tpmc700api.h”

TPMC700_HANDLE hdl;

TPMC700_STATUS result;

…

TPMC700-SW-42 – VxWorks Device Driver Page 23 of 35

…

/*---

Set output line 4

---*/

result = tpmc700OutputLineSet(hdl, 4);

if (result != TPMC700_OK)

{

/* handle error */

}

RETURN VALUE

On success, TPMC700_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC700_ERR_INVALID_HANDLE The specified device handle is invalid.

TPMC700_ERR_TIMEOUT Watchdog Timeout error occurred.

TPMC700_ERR_INVAL Specified output line is invalid.

TPMC700-SW-42 – VxWorks Device Driver Page 24 of 35

3.2.4 tpmc700OutputLineClear

NAME

tpmc700OutputLineClear – Clear the specific Output Line

SYNOPSIS

TPMC700_STATUS tpmc700OutputLineClear
(

TPMC700_HANDLE hdl,
int OutputLine

)

DESCRIPTION

This function clears the specified output line to ‘0’.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

OutputLine

This argument specifies the output line number which shall be cleared. Valid values are 1 to 32.
For TPMC700-x1 modules, values higher than 16 are ignored.

EXAMPLE

#include “tpmc700api.h”

TPMC700_HANDLE hdl;

TPMC700_STATUS result;

/*---

Clear output line 32

---*/

result = tpmc700OutputLineClear(hdl, 32);

if (result != TPMC700_OK)

{

/* handle error */

}

TPMC700-SW-42 – VxWorks Device Driver Page 25 of 35

RETURN VALUE

On success, TPMC700_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC700_ERR_INVALID_HANDLE The specified device handle is invalid.

TPMC700_ERR_TIMEOUT Watchdog Timeout error occurred.

TPMC700_ERR_INVAL Specified output line is invalid.

TPMC700-SW-42 – VxWorks Device Driver Page 26 of 35

3.2.5 tpmc700OutputStatus

NAME

tpmc700OutputStatus – Read Status of Output Lines and Watchdog

SYNOPSIS

TPMC700_STATUS tpmc700OutputStatus
(

TPMC700_HANDLE hdl,
unsigned int *pOutputValue,
unsigned int *pWatchdogStatus

)

DESCRIPTION

This function reads the status of the output lines and also the watchdog facility.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pOutputValue

This argument is a pointer to an unsigned int (32bit) value where the output line status is
returned. Bit 0 of the output word corresponds to the first output line, bit 1 corresponds to the
second output line, and so on. For TPMC700-x1, the upper 16bits shall be ignored.

pWatchdogStatus

This argument is a pointer to an unsigned int (32bit) value where the watchdog status is
returned. The following values are possible:

Value Description

TPMC700_WD_ENABLED The Watchdog is enabled.

TPMC700_WD_DISABLED The Watchdog is disabled.

TPMC700_WD_FAILURE The Watchdog has recognized a failure and has
disabled all output channels.

TPMC700-SW-42 – VxWorks Device Driver Page 27 of 35

EXAMPLE

#include “tpmc700api.h”

TPMC700_HANDLE hdl;

TPMC700_STATUS result;

unsigned int OutputValue;

unsigned int WatchdogStatus;

/*---

Read output status

---*/

result = tpmc700OutputStatus(hdl,

&OutputValue,

&WatchdogStatus);

if (result == TPMC700_OK)

{

if (WatchdogStatus != TPMC700_WD_FAILURE)

{

printf(“Output Status: 0x%08X\n”, OutputValue);

}

else

{

printf(“Output disabled by Watchdog\n”);

}

}

else

{

/* handle error */

}

RETURN VALUE

On success, TPMC700_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC700_ERR_INVALID_HANDLE The specified device handle is invalid.

TPMC700-SW-42 – VxWorks Device Driver Page 28 of 35

Watchdog Functions3.3

3.3.1 tpmc700WatchdogEnable

NAME

tpmc700WatchdogEnable – Enable Output Watchdog

SYNOPSIS

TPMC700_STATUS tpmc700WatchdogEnable
(

TPMC700_HANDLE hdl
)

DESCRIPTION

This function enables the watchdog timer for the output lines. The watchdog function is activated after
the next write operation to the device. Please remember that if the watchdog is enabled and no write
access occurs within 120 ms, all outputs go into the OFF state. To unlock the output register and
leave the OFF state the function tpmc700WatchdogReset must be executed.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc700api.h”

TPMC700_HANDLE hdl;

TPMC700_STATUS result;

…

TPMC700-SW-42 – VxWorks Device Driver Page 29 of 35

…

/*-----------------

Enable Watchdog

-----------------*/

result = tpmc700WatchdogEnable(hdl);

if (result != TPMC700_OK)

{

/* handle error */

}

RETURN VALUE

On success, TPMC700_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC700_ERR_INVALID_HANDLE The specified device handle is invalid.

TPMC700-SW-42 – VxWorks Device Driver Page 30 of 35

3.3.2 tpmc700WatchdogDisable

NAME

tpmc700WatchdogDisable – Disable Output Watchdog

SYNOPSIS

TPMC700_STATUS tpmc700WatchdogDisable
(

TPMC700_HANDLE hdl
)

DESCRIPTION

This function disables the watchdog timer for the output lines.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc700api.h”

TPMC700_HANDLE hdl;

TPMC700_STATUS result;

/*-----------------

Disable Watchdog

-----------------*/

result = tpmc700WatchdogDisable(hdl);

if (result != TPMC700_OK)

{

/* handle error */

}

TPMC700-SW-42 – VxWorks Device Driver Page 31 of 35

RETURN VALUE

On success, TPMC700_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC700_ERR_INVALID_HANDLE The specified device handle is invalid.

TPMC700-SW-42 – VxWorks Device Driver Page 32 of 35

3.3.3 tpmc700WatchdogReset

NAME

tpmc700WatchdogReset – Reset Output Watchdog Error

SYNOPSIS

TPMC700_STATUS tpmc700WatchdogReset
(

TPMC700_HANDLE hdl
)

DESCRIPTION

This function resets the watchdog status and clears an occurred error.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc700api.h”

TPMC700_HANDLE hdl;

TPMC700_STATUS result;

/*-----------------

Reset Watchdog

-----------------*/

result = tpmc700WatchdogReset(hdl);

if (result != TPMC700_OK)

{

/* handle error */

}

TPMC700-SW-42 – VxWorks Device Driver Page 33 of 35

RETURN VALUE

On success, TPMC700_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

Error Code Description

TPMC700_ERR_INVALID_HANDLE The specified device handle is invalid.

TPMC700-SW-42 – VxWorks Device Driver Page 34 of 35

4 Legacy I/O System Functions
This chapter describes the legacy driver-level interface to the I/O system. The purpose of these
functions is to install the driver in the I/O system, add and initialize devices.

The legacy I/O system functions are only relevant for the legacy TPMC700 driver. For the
VxBus-enabled TPMC700 driver, the driver will be installed automatically in the I/O system and
devices will be created as needed for detected modules.

tpmc700PciInit4.1

NAME

tpmc700PciInit – Generic PCI device initialization

SYNOPSIS

void tpmc700PciInit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC700 PCI spaces (base address register) and to enable the TPMC700
device for access.

The global variable tpmc700Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

> 0 Initialization successful completed. The value of tpmc700Status is equal to the number of
mapped PCI spaces

0 No TPMC700 device found

< 0 Initialization failed. The value of (tpmc700Status & 0xFF) is equal to the number of
mapped spaces until the error occurs.

Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc[].

Remedy: Add dummy entries as necessary (syslib.c).

EXAMPLE

extern void tpmc700PciInit();

tpmc700PciInit();

TPMC700-SW-42 – VxWorks Device Driver Page 35 of 35

5 Debugging and Diagnostic
The TPMC700 device driver provides a function and debug statements to display versatile information
of the driver installation and status on the debugging console.

If the VxBus driver is used, the TPMC700 show routine is included in the driver by default and can be
called from the VxWorks shell. If this function is not needed or program space is rare the function can
be removed from the code by un-defining the macro INCLUDE_TPMC700_SHOW in tpmc700drv.c

The tpmc700Show function (only if VxBus is used) displays detailed information about probed
modules, assignment of devices respective device names to probed TPMC700 modules and device
statistics.

If TPMC700 modules were probed but no devices were created it may be helpful to enable debugging
code inside the driver code by defining the macro TPMC700_DEBUG in tpmc700drv.c.

In contrast to VxBus TPMC700 devices, legacy TPMC700 devices must be created “manually”.
This will be done with the first call to the tpmc700Open API function.

-> tpmc700Show

Probed Modules:
[0] TPMC700-10: Bus=4, Dev=2, DevId=0x0353, VenId=0x1498, Init=OK, vxDev=0x5380

Associated Devices:
[0] TPMC700-10: /tpmc700/0

Device Statistics:
/tpmc700/0:

open count = 0
Current Output Value = 0x00000000
Watchdog disabled

	1	Introduction
	2	Installation
	2.1	Legacy vs. VxBus Driver
	2.2	VxBus Driver Installation
	2.2.1	Direct BSP Builds

	2.3	Legacy Driver Installation
	2.3.1	Include device driver in VxWorks projects
	2.3.2	Special Installation for Intel x86 based Targets

	2.4	System Resource Requirement

	3	API Documentation
	3.1	General Functions
	3.1.1	tpmc700Open
	3.1.2	tpmc700Close
	3.1.3	tpmc700GetPciInfo

	3.2	Output Functions
	3.2.1	tpmc700Write
	3.2.2	tpmc700WriteMask
	3.2.3	tpmc700OutputLineSet
	3.2.4	tpmc700OutputLineClear
	3.2.5	tpmc700OutputStatus

	3.3	Watchdog Functions
	3.3.1	tpmc700WatchdogEnable
	3.3.2	tpmc700WatchdogDisable
	3.3.3	tpmc700WatchdogReset

	4	Legacy I/O System Functions
	4.1	tpmc700PciInit

	5	Debugging and Diagnostic

