
The Embedded I/O Company

TPMC821-S
Windows Device

INTERBUS Mast

Version 2.0.x

User Manu

Issue 2.0.0

July 2015

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-65
Driver

er G4

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC821-SW-65 – Windows Device Driver Page 2 of 27

TPMC821-SW-65

Windows Device Driver

INTERBUS Master G4

Supported Modules:
TPMC821

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2002-2015 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue November 25, 2002

1.0.1 Slips of the pen rectified December 13, 2002

2.0.0 General Revision, Windows 7 and 64-bit Support, Description of
Installation removed

July 3, 2015

TPMC821-SW-65 – Windows Device Driver Page 3 of 27

Table of Contents

1 INTRODUCTION... 4

2 TPMC821 DEVICE DRIVER PROGRAMMING .. 5

TPMC821 Files and I/O Functions ...52.1

2.1.1 Opening a TPMC821 Device..5
2.1.2 Closing a TPMC821 Device ...7
2.1.3 TPMC821 Device I/O Control Functions ..8

2.1.3.1 IOCTL_TP821_READ...10
2.1.3.2 IOCTL_TP821_WRITE ...13
2.1.3.3 IOCTL_TP821_BIT_CMD...17
2.1.3.4 IOCTL_TP821_MBX_CMD, IOCTL_TP821_MBX_CMD_NOWAIT...........................18
2.1.3.5 IOCTL_TP821_GET_DIAG ..19
2.1.3.6 IOCTL_TP821_CONFIG...21
2.1.3.7 IOCTL_TP821_SET_HOST_FAIL ..23
2.1.3.8 IOCTL_TP821_RESET_HOST_FAIL ...24
2.1.3.9 IOCTL_TP821_RESET_HARDWARE_FAIL..25
2.1.3.10 IOCTL_TP821_MOD_INFO..26

TPMC821-SW-65 – Windows Device Driver Page 4 of 27

1 Introduction
The TPMC821-SW-65 Windows device driver is a kernel mode driver which allows the operation of the
supported hardware module on an Intel or Intel-compatible Windows operating system.

The TPMC821-SW-65 device driver supports the following features:

 All possible operating modes are supported
o Asynchronous mode with consistency locking
o Asynchronous mode without consistency locking
o Bus synchronous mode
o Program synchronous mode

 Standard function bit commands
 Mailbox commands
 Reading and writing process data
 Reading diagnostic information

The TPMC821-SW-65 device driver supports the modules listed below:

TPMC821 INTERBUS Master G4 (PMC)

To get more information about the features and use of TPMC821 devices it is recommended to read
the manuals listed below.

TPMC821 User Manual

TEWS Windows Driver Installation Guide

IBS User Manuals

TPMC821-SW-65 – Windows Device Driver Page 5 of 27

2 TPMC821 Device Driver Programming
The TPMC821-SW-65 Windows WDM device driver is a kernel mode device driver.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

TPMC821 Files and I/O Functions2.1

The following section doesn’t contain a full description of the Win32 functions for interaction with the
TPMC821 device driver. Only the required parameters are described in detail.

2.1.1 Opening a TPMC821 Device

Before you can perform any I/O the TPMC821 device must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TPMC821 device.

SYNOPSIS

HANDLE CreateFile(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

)

PARAMETERS

lpFileName

Points to a null-terminated string, which specifies the name of the TPMC821 to open. The
lpFileName string should be of the form \\.\TPMC821_x to open the device x. The ending x is a
one-based number. The first device found by the driver is \\.\TPMC821_1, the second
\\.\TPMC821_2 and so on.

dwDesiredAccess

Specifies the type of access to the TPMC821.
For the TPMC821 this parameter must be set to read-write access (GENERIC_READ |
GENERIC_WRITE)

TPMC821-SW-65 – Windows Device Driver Page 6 of 27

dwShareMode

Set of bit flags that specify how the object can be shared. Set to 0.

lpSecurityAttributes

This argument is a pointer to a security structure. Set to NULL for TPMC821 devices.

dwCreationDistribution

Specifies which action to take on files that exist, and which action to take when files do not
exist. TPMC821 devices must be always opened OPEN_EXISTING.

dwFlagsAndAttributes

Specifies the file attributes and flags for the file. This value must be set to 0 (no overlapped I/O).

hTemplateFile

This value must be NULL for TPMC821 devices.

RETURN VALUE

If the function succeeds, the return value is an open handle to the specified TPMC821 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

EXAMPLE

HANDLE hDevice;

hDevice = CreateFile(

“\\\\.\\TPMC821_1”,

GENERIC_READ | GENERIC_WRITE,

0,

NULL, // no security attrs

OPEN_EXISTING, // TPMC821 device always open existing

0, // no overlapped I/O

NULL

);

if (hDevice == INVALID_HANDLE_VALUE) {

ErrorHandler("Could not open device"); // process error

}

SEE ALSO

CloseHandle(), Win32 documentation CreateFile()

TPMC821-SW-65 – Windows Device Driver Page 7 of 27

2.1.2 Closing a TPMC821 Device

The CloseHandle function closes an open TPMC821 handle.

SYNOPSIS

BOOL CloseHandle(
HANDLE hDevice;

)

PARAMETERS

hDevice

Identifies an open TPMC821 handle.

RETURN VALUE

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

EXAMPLE

HANDLE hDevice;

if (!CloseHandle(hDevice)) {

ErrorHandler("Could not close device"); // process error

}

SEE ALSO

CreateFile(), Win32 documentation CloseHandle()

TPMC821-SW-65 – Windows Device Driver Page 8 of 27

2.1.3 TPMC821 Device I/O Control Functions

The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

SYNOPSIS

BOOL DeviceIoControl(
HANDLE hDevice,
DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped

);

PARAMETERS

hDevice

Handle to the TPMC821 that is to perform the operation.

dwIoControlCode

Specifies the control code for the desired operation. This value identifies the specific operation
to be performed. The following values are defined in tpmc821.h:

Value Meaning

IOCTL_TP821_READ Read process data out of the “DTA IN” area

IOCTL_TP821_WRITE Write new process data to the “DTA OUT”
area

IOCTL_TP821_BIT_CMD Execute a standard function bit command

IOCTL_TP821_MBX_CMD Execute a mailbox command and wait for
confirmation

IOCTL_TP821_MBX_CMD_NOWAIT Execute a mailbox command without waiting
for confirmation

IOCTL_TP821_GET_DIAG Get diagnostic information from the device

IOCTL_TP821_CONFIG Configure the device driver

IOCTL_TP821_SET_HOST_FAIL Set a serious host system failure interrupt

IOCTL_TP821_RESET_HOST_FAIL Reset the host system failure interrupt

IOCTL_TP821_RESET_HARDWARE_FAIL Reset the device hardware failure flag

IOCTL_TP821_MOD_INFO Get information about the module (PCI-
location, board variant)

See below for more detailed information on each control code.

TPMC821-SW-65 – Windows Device Driver Page 9 of 27

To use these TPMC821 specific control codes the header file tpmc821.h must be
included.

lpInBuffer

Pointer to a buffer that contains the data required to perform the operation.

nInBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpInBuffer.

lpOutBuffer

Pointer to a buffer that receives the operation’s output data.

nOutBufferSize

Specifies the size, in bytes, of the buffer pointed to by lpOutBuffer.

lpBytesReturned

Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by lpOutBuffer. A valid pointer is required.

lpOverlapped

Pointer to an Overlapped structure. This value must be set to NULL (no overlapped I/O).

RETURN VALUE

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

SEE ALSO

Win32 documentation DeviceIoControl()

TPMC821-SW-65 – Windows Device Driver Page 10 of 27

2.1.3.1 IOCTL_TP821_READ

This TPCM821 control function reads actual process data out of the DTA IN area. A pointer to the
caller’s data buffer is passed by the parameters lpInBuffer and lpOutBuffer to the driver. This buffer
contains variable length segments of data type TP821_SEGMENT. Each segment holds an exact
description of the embedded data like data type, number of data items and offset in the DTA IN area.
On entrance of this control function, every segment contains a description of the data items to read; on
exit the driver fills the data union with the desired process data.

This relative complex mechanism has two advantages. First you can pick up occasional placed data
items without copying the whole DAT IN buffer and second, word and long word organized data items
can be automatically byte swapped by the driver. Remember Intel x86 CPU’s use little-endian and
Motorola respective the INTERBUS use big-endian alignment of data words.

typedef struct {

USHORT ItemNumber;

USHORT ItemType;

USHORT DataOffset;

union {

UCHAR byte[1];

USHORT word[1];

ULONG lword[1];

} u;

} TP821_SEGMENT, *PTP821_SEGMENT;

MEMBERS

ItemNumber

Specifies the number of items of the specified type in the data array. In other words it specifies
the size of the array u.byte[], u.word[] or u.lword[].

ItemType

Specifies the data type of the embedded process data. Note, every data item in the segment
must have the same type.

Type Description

TP821_END Specifies the last segment in the list. No data follows.

TP821_BYTE Specifies a segment with byte data. The union part byte[] will be
used.

TP821_WORD Specifies a segment with word data. The union part word[] will be
used and all words of the array will be byte swapped.

TP821_LWORD Specifies a segment with long word data. The union part lword[] will
be used and all long words will be byte swapped.

DataOffset

Specifies a byte offset from the beginning of the DTA IN area. The driver start reading data
items from this offset and stores the requested number of items in the data union of the
segment structure.

TPMC821-SW-65 – Windows Device Driver Page 11 of 27

u

The union u contains three arrays. The size of these dynamic expandable arrays depends on
the number of data items to read. Because the size of this arrays is only well-known at run-time
you should never use the sizeof() function to determine the size of the segment structure.
The macro SEGMENT_SIZE(pSeg) (defined in tpmc821.h) delivers the correct structure size.
The macro NEXT_SEGMENT(pSeg) (also defined in tpmc821.h) calculates a pointer to the
begin of the following segment in the buffer. Both macros in combination should be used to
assemble a read data buffer for the desired read request. The end of the read buffer is specified
by a segment with type of TP821_END.
Please refer to the next example to see how to assemble a correct read buffer.

EXAMPLE

#include “tpmc821.h”

HANDLE hDevice;

BOOLEAN success;

ULONG NumBytes, size;

UCHAR SegmentBuffer[100];

PT821_SEGMENT pSeg;

// [1]

size = 0;

pSeg = (PTP821_SEGMENT)&SegmentBuffer;

// [2]

pSeg->ItemType = TP821_BYTE;

pSeg->ItemNumber = 4;

pSeg->DataOffset = 0;

size += SEGMENT_SIZE(pSeg); // add size of this segment

// [3]

pSeg = PNEXT_SEGMENT(pSeg);

pSeg->ItemType = TP821_WORD; // same data read as word

pSeg->ItemNumber = 2;

pSeg->DataOffset = 0;

size += SEGMENT_SIZE(pSeg);

pSeg = PNEXT_SEGMENT(pSeg); // same data read as longword

pSeg->ItemType = TP821_LWORD;

pSeg->ItemNumber = 1;

pSeg->DataOffset = 0;

size += SEGMENT_SIZE(pSeg);

TPMC821-SW-65 – Windows Device Driver Page 12 of 27

// [4]

pSeg = PNEXT_SEGMENT(pSeg); // End segment

pSeg->ItemType = TP821_END;

pSeg->ItemNumber = 0;

pSeg->DataOffset = 0;

size += SEGMENT_SIZE(pSeg);

// [5]

success = DeviceIoControl (

hDevice, // TPMC821 handle

IOCTL_TP821_READ, // control code

&SegmentBuffer, // template of data segments to read

size, // size of data segments

&SegmentBuffer, // filled data segments

size, // same size as the template buffer

&NumBytes, // number of bytes transferred

NULL

);

if(success) {

/* Process data */;

}

else {

ErrorHandler ("Device I/O control error”); // process error

}

This example read the first four bytes of the DTA IN area within three segments with different types
(byte, word and longword). If the first 4 bytes of the DTA IN area contains significant values you can
realize the effect of byte swapping words and longwords (see also tpmc821exa.c).

[1] After opening the device, the variable size is initialized with 0 and the segment pointer is set to
begin of the segment buffer. Be sure that the size of the buffer is large enough to hold all
segments.

[2] The first segment contains 4 bytes read from offset 0 of the DTA IN area. After initializing of
the segment we update the buffer size using the SEGMENT_SIZE macro. Do not use sizeof()
instead.

[3] Before initializing the next segment we calculate a new segment pointer using the
PNEXT_SEGMENT macro. This macro simply adds the size of the previous segment to the
previous segment pointer and returns the new segment pointer. The new segment starts
without a gap direct after the previous segment.

[4] The end of the segment list is specified by a segment with item type TP821_END. If this
segment is missing the read request fails. Be sure that the size of the end segment is included
in the total size of the segment list.

[5] The DeviceIoControl() call transfers the request to the driver. The driver interprets the segment
list and fills the corresponding data arrays with new process data.

TPMC821-SW-65 – Windows Device Driver Page 13 of 27

2.1.3.2 IOCTL_TP821_WRITE

This TPCM821 control function writes new data to the DTA OUT area. A pointer to the callers data
buffer is passed by the parameters lpInBuffer to driver. This buffer contains variable length segments
of data type TP821_SEGMENT. Each segment holds an exact description of the embedded data like
data type, number of data items, offset in the DTA OUT area and the data items to write.

This relative complex mechanism has two advantages. First you can write occasional placed data
items without writing data in the whole DAT OUT buffer and second, word and long word organized
data items can be automatically byte swapped by the driver. Remember Intel x86 CPU’s use little-
endian and Motorola respective the INTERBUS use big-endian alignment of data words.

typedef struct {

USHORT ItemNumber;

USHORT ItemType;

USHORT DataOffset;

union {

UCHAR byte[1];

USHORT word[1];

ULONG lword[1];

} u;

} TP821_SEGMENT, *PTP821_SEGMENT;

MEMBERS

ItemNumber

Specifies the number of items of the specified type in the data array. In other words it specifies
the size of the array u.byte[], u.word[] or u.lword[].

ItemType

Specifies the data type of the embedded process data. Note, every data item in the segment
must have the same type.

Type Description

TP821_END Specifies the last segment in the list. No data follows.

TP821_BYTE Specifies a segment with byte data. The union part byte[] will be
used.

TP821_WORD Specifies a segment with word data. The union part word[] will be
used and all words of the array will be byte swapped.

TP821_LWORD Specifies a segment with long word data. The union part lword[] will
be used and all long words will be byte swapped.

DataOffset

Specifies a byte offset from the beginning of the DTA OUT area where the new data should be
written.

TPMC821-SW-65 – Windows Device Driver Page 14 of 27

u

The union u contains three arrays. The size of these dynamic expandable arrays depends on
the number of data items to write. Because the size of this arrays is only well-known at run-time
you should never use the sizeof() function to determine the size of the segment structure.
The macro SEGMENT_SIZE(pSeg) (defined in tpmc821.h) delivers the correct structure size.
The macro NEXT_SEGMENT(pSeg) (also defined in tpmc821.h) calculates a pointer to the
begin of the following segment in the buffer. Both macros in combination should be used to
assemble a write data buffer for the desired write request. The end of the write buffer is
specified by a segment with type of TP821_END.
Please refer to the next example to see how to assemble a correct write buffer.

EXAMPLE

#include “tpmc821.h”

HANDLE hDevice;

BOOLEAN success;

ULONG NumBytes, size;

UCHAR SegmentBuffer[100];

PT821_SEGMENT pSeg;

// [1]

size = 0;

pSeg = (PTP821_SEGMENT)&SegmentBuffer;

// [2]

pSeg->ItemType = TP821_BYTE;

pSeg->ItemNumber = 4;

pSeg->DataOffset = 0;

pSeg->u.byte[0] = 1;

pSeg->u.byte[1] = 2;

pSeg->u.byte[2] = 3;

pSeg->u.byte[3] = 4;

size += SEGMENT_SIZE(pSeg); // add size of this segment

// [3]

pSeg = PNEXT_SEGMENT(pSeg); // calculate next pointer

pSeg->ItemType = TP821_LWORD;

pSeg->ItemNumber = 1;

pSeg->DataOffset = 4;

pSeg->u.lword[0] = 0xAA55BB66;

size += SEGMENT_SIZE(pSeg);

TPMC821-SW-65 – Windows Device Driver Page 15 of 27

// [4]

pSeg = PNEXT_SEGMENT(pSeg); // End segment

pSeg->ItemType = TP821_END;

pSeg->ItemNumber = 0;

pSeg->DataOffset = 0;

size += SEGMENT_SIZE(pSeg);

// [5]

success = DeviceIoControl (

hDevice, // TPMC821 handle

IOCTL_TP821_WRITE, // control code

&SegmentBuffer, // data segments to write

size, // size of data segments

NULL,

0,

&NumBytes, // not used

NULL

);

if(!success) {

ErrorHandler ("Device I/O control error”); // process error

}

This example does the following (see also tpmc821exa.c).

[1] The variable size is initialized with 0 and the segment pointer is set to the beginning of the
segment buffer. Be sure that the size of the buffer is large enough to hold all segments.

[2] The first segment contains 4 bytes to write from offset 0 of the DTA OUT area. After initializing
of the segment we update the buffer size using the SEGMENT_SIZE macro. Do not use
sizeof() instead.

[3] Before initializing the next segment we calculate a new segment pointer using the
PNEXT_SEGMENT macro. This macro simply adds the size of the previous segment to the
previous segment pointer and returns the new segment pointer. The new segment starts
without a gap direct after the previous segment. The long word data item will be byte-swapped
before writing to the DTA OUT area.

[4] The end of the segment list is specified by a segment with item type TP821_END. If this
segment is missing the read request fails. Be sure that the size of the end segment is included
in the total size of the segment list.

[5] The DeviceIoControl() call transfers the request to the driver. The driver interprets the segment
list and writes the contents of the data array to the specified locations in the DTA OUT area.

TPMC821-SW-65 – Windows Device Driver Page 16 of 27

The following example displays the memory layout of the segment buffer and the DTA OUT area after
a successful write operation.

Segment values:

1
st

segment:
ItemNumber: 4
ItemType: TP821_BYTE
ItemOffset: 0x0
data: 0x01, 0x02, 0x03, 0x04

2
nd

segment:
ItemNumber: 1
ItemType: TP821_LWORD
ItemOffset: 0x0
data: 0xAA55BB66

End segment:
ItemNumber: 0
ItemType: TP821_END
ItemOffset: 0x0
data: (none)

The segment buffer has the following layout:

Offset +0 +1 +2 +3 +4 +5 +6 +7

+0x00 0x04 0x00 0x01 0x00 0x00 0x00 0x01 0x02

+0x08 0x03 0x04 0x01 0x00 0x04 0x00 0x04 0x00

+0x10 0x66 0xBB 0x55 0xAA 0x00 0x00 0x00 0x00

+0x18 0x00 0x00 x x x x x x

The DTA OUT area of the TPMC821 (after writing):

Offset +0 +1 +2 +3 +4 +5 +6 +7
+0x00 0x01 0x02 0x03 0x04 0xAA 0x55 0xBB 0x66
+0x08 x x x x x x x x

TPMC821-SW-65 – Windows Device Driver Page 17 of 27

2.1.3.3 IOCTL_TP821_BIT_CMD

This control function allows the execution of various frequently used commands and command
sequences without using mailbox commands. A pointer to the caller’s parameter buffer is passed by
the parameters lpInBuffer to driver.

Usually this kind of command execution is used on bit oriented host system.

typedef struct {

USHORT FunctionBit;

USHORT FunctionParam;

} TP821_BITCMD, *PTP821_BITCMD;

MEMBERS

FunctionBit

Specifies the bit number [0...6] of the standard function to execute.

FunctionParam

Specifies an optional parameter for the standard function.

Additional information about standard function bits and parameter values can be found in the User
Manual – INTERBUS Generation 4 Master Board.

EXAMPLE

#include “tpmc821.h”

HANDLE hDevice;

BOOLEAN success;

TP821_BITCMD BitCmd;

BitCmd.FunctionBit = 1<<0; // Start_Data_Transfer_Req

BitCmd.FunctionParam = 0; // none

success = DeviceIoControl (

hDevice, // TPMC821 handle

IOCTL_TP821_BIT_CMD, // control code

&BitCmd,

sizeof(TP821_BITCMD),

NULL,

0,

&NumBytes, // not used

NULL

);

TPMC821-SW-65 – Windows Device Driver Page 18 of 27

2.1.3.4 IOCTL_TP821_MBX_CMD, IOCTL_TP821_MBX_CMD_NOWAIT

This control function is used to transmit messages from the host system to the IBS master (SSGI box
0). If an answer message is expected the received message (SSGI box 1) is copied direct to the user
receive buffer. A pointer to the users transmit buffer is passed by the parameter lpInBuffer to driver.
The parameter lpOutBuffer contains a pointer to the user receive buffer.

Transmit and receive buffer are organized as follows (valid for all services):

Word 1
Word 2
Word 3
Word 4

...

Service_Code
Parameter_Count

Parameter
Parameter

...
Parameter

The control function IOCTL_TP821_MBX_CMD_NOWAIT returns immediately to the caller without
waiting for an answer. This control function is used only for reset and unconfirmed PCP services.

Additional information about supported services can be found in the IBS User Manuals.

EXAMPLE

#include “tpmc821.h”

#define MAX_NUM_WORDS 100

HANDLE hDevice;

BOOLEAN success;

USHORT RequestPar[MAX_NUM_WORDS];

USHORT ResultPar[MAX_NUM_WORDS];

RequestPar[0] = 0x0710; // Create Configuration Service

RequestPar[1] = 1; // one parameter follow

RequestPar[2] = 1; // number of frames to generate

success = DeviceIoControl (

hDevice, // TPMC821 handle

IOCTL_TP821_MBX_CMD, // control code

RequestPar,

6, // size in bytes not words!

ResultPar,

MAX__NUM_WORDS * sizeof(USHORT),

&NumBytes, // number of bytes returned

NULL

);

TPMC821-SW-65 – Windows Device Driver Page 19 of 27

2.1.3.5 IOCTL_TP821_GET_DIAG

This control function returns a structure with various diagnostic information to the caller. A pointer to
the caller’s diagnostic structure is passed by the parameters lpOutBuffer to driver.

typedef struct {

USHORT SysfailReg;

USHORT ConfigReg;

USHORT DiagReg;

BOOLEAN HardwareFailure;

BOOLEAN InitComplete;

} TP821_DIAG, *PTP821_DIAG;

MEMBERS

SysfailReg, ConfigReg, DiagReg

Returns the actual values of the corresponding hardware register in the coupling memory:
Status Sysfail Register, Configuration Register and Master Diagnostic Status Register. The
meaning of every bit in these registers is described in the User Manual – INTERBUS
Generation 4 Master Board.

HardwareFailure

If the content is TRUE the IBS master has detected a hardware error. In this case the driver will
not accept data transfer or message box commands until this state is left by the
IOCTL_TP821_RESET_HARDWARE_FAIL command.
Note. A hardware failure could also occur after execution of the mailbox command
Reset_Controller_Board.

InitComplete

This parameter is TRUE if the INTERBUS firmware has completed initialization.

EXAMPLE

#include “tpmc821.h”

HANDLE hDevice;

BOOLEAN success;

TP821_DIAG DiagInfo;

…

TPMC821-SW-65 – Windows Device Driver Page 20 of 27

…

success = DeviceIoControl (

hDevice, // TPMC821 handle

IOCTL_TP821_GET_DIAG, // control code

NULL,

0,

&DiagInfo,

sizeof(TP821_DIAG),

&NumBytes, // number of bytes returned

NULL

);

if(success) {

printf("\nRead Diagnostic Information successful\n");

printf("Status Sysfail Register : %04Xhex\n",

DiagInfo.SysfailReg);

printf("Configuration Register : %04Xhex\n",

DiagInfo.ConfigReg);

printf("Master Diagnostic Register : %04Xhex\n",

DiagInfo.DiagReg);

printf("Hardware Failure : %s\n",

DiagInfo.HardwareFailure ? "TRUE" : "FALSE");

printf("Initialization done : %s\n",

DiagInfo.InitComplete ? "TRUE" : "FALSE");

}

else {

ErrorHandler ("Device I/O control error”); // process error

}

TPMC821-SW-65 – Windows Device Driver Page 21 of 27

2.1.3.6 IOCTL_TP821_CONFIG

This control function announces a new operating mode to the driver and change timeout values for
mailbox and data transfer functions. Every time the host changes the operating mode (SetValue
mailbox message) the driver must be introduced about that so he can handle following data transfer
message in the right manner (see also Automatic Configuration in the example application).

A pointer to the callers configuration structure is passed by the parameters lpInBuffer to the driver.

typedef struct {

USHORT OperatingMode;

ULONG DataTimeout;

ULONG MailboxTimeout;

} TP821_CONFIG, *PTP821_CONFIG;

MEMBERS

OperationMode

Specifies the new operating mode. Valid operating modes are:

Operating Mode Description

TP821_ASYNC In asynchronous operating mode, the process data is updated by
the INTERBUS firmware synchronously with the INTERBUS data
cycles, but asynchronously with hosts’ access to the process
image.
This operating mode is default after RESET.

TP821_ASYNC_LOCK In this asynchronous operating mode the hosts’ access to the
process data is locked for reading and writing consistent data.

TP821_BUS_SYNC Bus synchronous operating mode

TP821_PROG_SYNC Program synchronous operating mode

Additional information about operating modes can be found in the User Manual – INTERBUS
Generation 4 Master Board.

DataTimeout

Specifies a new timeout value for all following read and write commands from and to the DTA IN
and DTA OUT area. The default timeout value is 2 seconds.

MailboxTimeout

Specifies a new timeout value for all following mailbox and function bit commands. The default
timeout value is 10 seconds.

TPMC821-SW-65 – Windows Device Driver Page 22 of 27

EXAMPLE

#include “tpmc821.h”

HANDLE hDevice;

BOOLEAN success;

TP821_CONFIG ConfigPar;

// Setup new operating mode in the IBS firmware ...

ConfigPar.OperatingMode = TP821_ASYNC_LOCK;

ConfigPar.DataTimeout = 1;

ConfigPar.MailBoxTimeout = 20;

success = DeviceIoControl (

hDevice, // TPMC821 handle

IOCTL_TP821_CONFIG, // control code

&ConfigPar,

sizeof(TP821_CONFIG),

NULL,

0,

&NumBytes, // not used

NULL

);

if(!success) {

ErrorHandler ("Device I/O control error”); // process error

}

TPMC821-SW-65 – Windows Device Driver Page 23 of 27

2.1.3.7 IOCTL_TP821_SET_HOST_FAIL

This control function signals a serious host system failure to the TPMC821. On assertion of this host
fail interrupt the TPMC821 resets all INTERBUS outputs and switch on the HF LED on the TPMC821
control panel.

If the driver was terminated the host system failure is automatically set by the driver.

EXAMPLE

#include “tpmc821.h”

HANDLE hDevice;

BOOLEAN success;

success = DeviceIoControl (

hDevice, // TPMC821 handle

IOCTL_TP821_SET_HOST_FAIL, // control code

NULL,

0,

NULL,

0,

&NumBytes, // not used

NULL

);

if(!success) {

ErrorHandler ("Device I/O control error”); // process error

}

TPMC821-SW-65 – Windows Device Driver Page 24 of 27

2.1.3.8 IOCTL_TP821_RESET_HOST_FAIL

This control function resets the host system failure state in the TPMC821. No parameters are needed
for execution of this control function.

EXAMPLE

#include “tpmc821.h”

HANDLE hDevice;

BOOLEAN success;

success = DeviceIoControl (

hDevice, // TPMC821 handle

IOCTL_TP821_RESET_HOST_FAIL, // control code

NULL,

0,

NULL,

0,

&NumBytes, // not used

NULL

);

if(!success) {

ErrorHandler ("Device I/O control error”); // process error

}

TPMC821-SW-65 – Windows Device Driver Page 25 of 27

2.1.3.9 IOCTL_TP821_RESET_HARDWARE_FAIL

This control function resets the hardware failure flag in the device driver. The hardware failure flag was
set after reception of a service interrupt request from the TPMC821. No parameters are needed for
execution of this control function.

Additional information about the service interrupt request can be found in the TPCM821 User Manual
and User Manuals for the INTERBUS Generation 4 Master Board which is part of the TPMC821
Engineering Manual.

EXAMPLE

#include “tpmc821.h”

HANDLE hDevice;

BOOLEAN success;

success = DeviceIoControl (

hDevice, // TPMC821 handle

IOCTL_TP821_RESET_HARDWARE_FAIL, // control code

NULL,

0,

NULL,

0,

&NumBytes, // not used

NULL

);

if(!success) {

ErrorHandler ("Device I/O control error”); // process error

}

TPMC821-SW-65 – Windows Device Driver Page 26 of 27

2.1.3.10 IOCTL_TP821_MOD_INFO

This control function returns information about the TPMC821 module. The returned information may
be used to identify the location the module is mounted to. A pointer to the callers module info structure
is passed by the parameters lpOutBuffer to driver.

typedef struct {

UINT32 Variant

UINT32 PciBusNo

UINT32 PciDevNo;

} TP821_INFO_BUFFER, *PTP821_INFO_BUFFER;

MEMBERS

Variant

Returns the module variant. The value should always be 10. (TPMC821-10)

PciBusNo

Returns the PCI-Bus number the TPMC821 is mounted to.

PciDevNo

Returns the PCI-Device number of the TPMC821.

EXAMPLE

#include “tpmc821.h”

HANDLE hDevice;

BOOLEAN success;

success = DeviceIoControl (

hDevice, // TPMC821 handle

IOCTL_TP821_MOD_INFO, // control code

NULL,

0,

&ModuleInfo,

sizeof(TP821_INFO_BUFFER),

&NumBytes, // not used

NULL

);

…

TPMC821-SW-65 – Windows Device Driver Page 27 of 27

…

if(!success) {

ErrorHandler ("Device I/O control error”); // process error

}

printf("Module type = TPMC821-%02d\n", ModuleInfo.Variant);

printf("PCI bus = %d\n", ModuleInfo.PciBusNo);

printf("PCI device = %d\n", ModuleInfo.PciDevNo);

	1	Introduction
	2	TPMC821 Device Driver Programming
	2.1	TPMC821 Files and I/O Functions
	2.1.1	Opening a TPMC821 Device
	2.1.2	Closing a TPMC821 Device
	2.1.3	TPMC821 Device I/O Control Functions
	2.1.3.1	IOCTL_TP821_READ
	2.1.3.2	IOCTL_TP821_WRITE
	2.1.3.3	IOCTL_TP821_BIT_CMD
	2.1.3.4	IOCTL_TP821_MBX_CMD, IOCTL_TP821_MBX_CMD_NOWAIT
	2.1.3.5	IOCTL_TP821_GET_DIAG
	2.1.3.6	IOCTL_TP821_CONFIG
	2.1.3.7	IOCTL_TP821_SET_HOST_FAIL
	2.1.3.8	IOCTL_TP821_RESET_HOST_FAIL
	2.1.3.9	IOCTL_TP821_RESET_HARDWARE_FAIL
	2.1.3.10	IOCTL_TP821_MOD_INFO

