
The Embedded I/O Company

TPMC821-S
Linux Device D

INTERBUS Mast

Version 1.1.x

User Manu

Issue 1.1.0

August 2017

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-82
river

er G4

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC821-SW-82 – Linux Device Driver Page 2 of 34

TPMC821-SW-82

Linux Device Driver

INTERBUS Master G4 PMC

Supported Modules:
TPMC821

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2007-2017 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0.0 First Issue July 24, 2007

1.1.0 General Update August 15, 2017

TPMC821-SW-82 – Linux Device Driver Page 3 of 34

Table of Contents

1 INTRODUCTION... 4

2 INSTALLATION.. 5

Build and Install the Device Driver..52.1

Uninstall the Device Driver ..62.2

Install the Device Driver in the Running Kernel...62.3

Remove Device Driver from the Running Kernel...62.4

Change Major Device Number ...72.5

3 DEVICE INPUT/OUTPUT FUNCTIONS ... 8

open..83.1

close ...103.2

ioctl ...113.3

3.3.1 TPMC821_IOCX_READ...13
3.3.2 TPMC821_IOCX_WRITE ...17
3.3.3 TPMC821_IOCS_BITCMD...22
3.3.4 TPMC821_IOCX_MBOXCMD, _NOWAIT ...24
3.3.5 TPMC821_IOCG_GETDIAG ..26
3.3.6 TPMC821_IOCS_CONFIG...28
3.3.7 TPMC821_IOC_HOSTFAIL_SET ..30
3.3.8 TPMC821_IOC_HOSTFAIL_RESET ...31
3.3.9 TPMC821_IOC_HWFAIL_RESET ...32

4 DIAGNOSTIC.. 33

TPMC821-SW-82 – Linux Device Driver Page 4 of 34

1 Introduction
The TPMC821-SW-82 Linux device driver allows the operation of TPMC821 devices conforming to the
Linux I/O system specification. This includes a device-independent basic I/O interface with open(),
close() and ioctl() functions.

Special I/O operation that do not fit to the standard I/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

The TPMC821-SW-82 device driver supports the following features:

 Asynchronous mode with consistency locking
 Asynchronous mode without consistency locking
 Bus synchronous mode
 Program synchronous mode
 Standard function bit commands
 Mailbox commands
 Reading and writing process data
 Reading diagnostic information
 Creates devices with dynamically allocated or fixed major device numbers
 DEVFS and SYSFS (UDEV) support for automatic device node creation

The TPMC821-SW-82 device driver supports the modules listed below:

TPMC821 INTERBUS Master G4 PMC (PMC)

To get more information about the features and use of TPMC821 devices it is recommended to read
the manuals listed below.

TPMC821 User Manual

Interbus Specification

TPMC821-SW-82 – Linux Device Driver Page 5 of 34

2 Installation
Following files are located on the distribution media:

Directory path ‘TPMC821-SW-82’:

TPMC821-SW-82-SRC.tar.gz GZIP compressed archive with driver source code
TPMC821-SW-82-1.1.0.pdf PDF copy of this manual
ChangeLog.txt Release history
Release.txt Release information

For installation the files have to be copied to the desired target directory.

The GZIP compressed archive TPMC821-SW-82-SRC.tar.gz contains the following files and
directories:

Directory path ‘./tpmc821/’:

tpmc821.c Driver source code
tpmc821def.h Driver include file
tpmc821.h Driver include file for application program
include/tpxxxhwdep.c Hardware dependent library
include/tpxxxhwdep.h Hardware dependent library header file
include/tpmodule.c Driver independent library
include/tpmodule.h Driver independent library header file
include/config.h Driver independent library header file
Makefile Device driver make file
makenode Script to create device nodes in the file system
example/tpmc821exa.c Example application
example/Makefile Example application make file

In order to perform an installation, extract all files of the archive TPMC821-SW-82-SRC.tar.gz to the
desired target directory. The command ‘tar -xzvf TPMC821-SW-82-SRC.tar.gz’ will extract the files
into the local directory.

 Login as root and change to the target directory

 Copy tpmc821.h to /usr/include

Build and Install the Device Driver2.1

 Login as root

 Change to the target directory

 To create and install the driver in the module directory /lib/modules/<version>/misc enter:

make install

 To update the device driver’s module dependencies, enter:

depmod -aq

TPMC821-SW-82 – Linux Device Driver Page 6 of 34

Uninstall the Device Driver2.2

 Login as root

 Change to the target directory

 To remove the driver from the module directory /lib/modules/<version>/misc enter:

make uninstall

 Update kernel module dependency description file

depmod –aq

Install the Device Driver in the Running Kernel2.3

 To load the device driver into the running kernel, login as root and execute the following
commands:

modprobe tpmc821drv

 After the first build or if you are using dynamic major device allocation it is necessary to create
new device nodes on the file system. Please execute the script file makenode to do this. If your
kernel has enabled a device file system (devfs or sysfs with udev) then you have to skip
running the makenode script. Instead of creating device nodes from the script the driver itself
takes creating and destroying of device nodes in its responsibility.

sh makenode

On success the device driver will create a minor device for each TPMC821 device found. The first
TPMC821 device can be accessed with device node /dev/tpmc821_0, the second with
/dev/tpmc821_1, the third with /dev/tpmc821_2 and so on.

The assignment of device nodes to physical TPMC821 modules depends on the search order of the
PCI bus driver.

Remove Device Driver from the Running Kernel2.4

 To remove the device driver from the running kernel login as root and execute the following
command:

modprobe tpmc821drv –r

If your kernel has enabled devfs or sysfs (udev), all /dev/tpmc821_x nodes will be automatically
removed from your file system after this.

Be sure that the driver isn’t opened by any application program. If opened you will get the
response “tpmc821drv: Device or resource busy” and the driver will still remain in the system
until you close all opened files and execute modprobe –r again.

TPMC821-SW-82 – Linux Device Driver Page 7 of 34

Change Major Device Number2.5

The TPMC821 device driver uses dynamic allocation of major device numbers by default. If this isn’t
suitable for the application it is possible to define a major number for the driver. If the kernel has
enabled devfs the driver will not use the symbol TPMC821_MAJOR.

To change the major number edit the file tpmc821def.h, change the following symbol to an appropriate
value and enter make install to create a new driver.

TPMC821_MAJOR Valid numbers are in range between 0 and 255. A value of 0 means
dynamic number allocation.

Example:

#define TPMC821_MAJOR 122

Be sure that the desired major number isn’t used by other drivers. Please check /proc/devices
to see which numbers are free.

TPMC821-SW-82 – Linux Device Driver Page 8 of 34

3 Device Input/Output Functions
This chapter describes the interface to the device driver I/O system.

open3.1

NAME

open() - open a file descriptor

SYNOPSIS

#include <fcntl.h>

int open (const char *filename, int flags)

DESCRIPTION

The open function creates and returns a new file descriptor for the file named by filename. The flags
argument controls how the file is to be opened. This is a bit mask; you create the value by the bitwise
OR of the appropriate parameters (using the | operator in C).

See also the GNU C Library documentation for more information about the open function and open
flags.

EXAMPLE

int fd;

fd = open(“/dev/tpmc821_0”, O_RDWR);

if (fd < 0)

{

/* handle error condition */

}

RETURNS

The normal return value from open is a non-negative integer file descriptor. In the case of an error, a
value of –1 is returned. The global variable errno contains the detailed error code.

TPMC821-SW-82 – Linux Device Driver Page 9 of 34

ERRORS

Error Code Description

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during open. For more information about open error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC821-SW-82 – Linux Device Driver Page 10 of 34

close3.2

NAME

close() – close a file descriptor

SYNOPSIS

#include <unistd.h>

int close (int filedes)

DESCRIPTION

The close function closes the file descriptor filedes.

EXAMPLE

int fd;

if (close(fd) != 0)

{

/* handle close error conditions */

}

RETURNS

The normal return value from close is 0. In the case of an error, a value of –1 is returned. The global
variable errno contains the detailed error code.

ERRORS

Error Code Description

E_NODEV The requested minor device does not exist.

This is the only error code returned by the driver, other codes may be returned by the I/O system
during close. For more information about close error codes, see the GNU C Library description – Low-
Level Input/Output.

SEE ALSO

GNU C Library description – Low-Level Input/Output

TPMC821-SW-82 – Linux Device Driver Page 11 of 34

ioctl3.3

NAME

ioctl() – device control functions

SYNOPSIS

#include <sys/ioctl.h>

int ioctl(int filedes, int request [, void *argp])

DESCRIPTION

The ioctl function sends a control code directly to a device, specified by filedes, causing the
corresponding device to perform the requested operation.

The argument request specifies the control code for the operation. The optional argument argp
depends on the selected request and is described for each request in detail later in this chapter.

The following ioctl codes are defined in tpmc821.h:

Function Description

TPMC821_IOCX_READ Read process data out of the “DTA IN” area

TPMC821_IOCX_WRITE Write new process data to the “DTA OUT” area

TPMC821_IOCS_BITCMD Execute a standard function bit command

TPMC821_IOCX_MBOXCMD Execute a mailbox command and wait for
confirmation

TPMC821_IOCX_MBOXCMD_NOWAIT Execute a mailbox command without waiting for
confirmation

TPMC821_IOCG_GETDIAG Get diagnostic information from the device

TPMC821_IOCS_CONFIG Configure the device driver

TPMC821_IOC_HOSTFAIL_SET Set a serious host system failure interrupt

TPMC821_IOC_HOSTFAIL_RESET Reset the host system failure interrupt

TPMC821_IOC_HWFAIL_RESET Reset the device hardware failure flag

See behind for more detailed information on each control code.

To use these TPMC821 specific control codes the header file tpmc821.h must be included in
the application

TPMC821-SW-82 – Linux Device Driver Page 12 of 34

RETURNS

On success, zero is returned. In the case of an error, a value of –1 is returned. The global variable
errno contains the detailed error code.

ERRORS

Error Code Description

EINVAL Invalid argument. This error code is returned if the requested ioctl
function is unknown. Please check the argument request.

Other function dependent error codes will be described for each ioctl code separately. Note, the
TPMC821 driver always returns standard Linux error codes.

SEE ALSO

ioctl man pages

TPMC821-SW-82 – Linux Device Driver Page 13 of 34

3.3.1 TPMC821_IOCX_READ

NAME

TPMC821_IOCX_READ – Read process data out of the “DTA IN” area

DESCRIPTION

This ioctl function reads process data out of the DTA IN area. A pointer to the caller’s message buffer
(TPMC821_RWBUF) is passed by the parameter argp to the driver. This buffer contains variable
length segments of data type TPMC821_SEGMENT. Each segment holds an exact description of the
embedded data like data type, number of data items and offset in the DTA IN area. On entrance of this
control function, every segment contains a description of the data items to read; on exit the driver fills
the data union with the desired process data.

This relative complex mechanism has two advantages. First you can pick up occasional placed data
items without copying the whole DAT IN buffer and second, 16-bit and 32-bit word organized data
items can be automatically byte swapped by the driver. Remember Intel x86 CPU’s use little-endian
and Motorola respective the INTERBUS use big-endian alignment of data words

typedef struct

{

unsigned long Size;

TPMC821_SEGMENT SegmentBuffer;

} TPMC821_RWBUF, *PTPMC821_RWBUF;

Size

Receives the total size of the variable structure buffer.

SegmentBuffer

This is the variable sized data buffer, specified as follows:

typedef struct {

unsigned short ItemNumber;

unsigned short ItemType;

unsigned short DataOffset;

union {

unsigned char byte[1];

unsigned short word[1];

unsigned int lword[1];

} u;

} TPMC821_SEGMENT, *PTPMC821_SEGMENT;

ItemNumber

Specifies the number of items of the specified type in the data array. In other words it
specifies the size of the array u.byte[], u.word[] or u.lword[].

TPMC821-SW-82 – Linux Device Driver Page 14 of 34

ItemType

Specifies the data type of the embedded process data. Note, every data item in the
segment must have the same type. The following values are possible:

Value Description

TPMC821_END Specifies the last segment in the list. No data follows.

TPMC821_BYTE Specifies a segment with byte data. The union part byte[] will
be used.

TPMC821_WORD Specifies a segment with word data. The union part word[]
will be used and all words of the array will be byte swapped.

TPMC821_LWORD Specifies a segment with 32-bit word data. The union part
lword[] will be used and all 32-bit words will be byte
swapped.

DataOffset

Specifies a byte offset from the beginning of the DTA IN area. The driver start reading
data items from this offset and stores the requested number of items in the data union of
the segment structure.

u

The union u contains three arrays. The size of these dynamic expandable arrays
depends on the number of data items to read. Because the size of this arrays is only
well-known at run-time you should never use the sizeof() function to determine the size of
the segment structure.
The macro TPMC821_SEGMENT_SIZE(pSeg) (defined in tpmc821.h) delivers the
correct structure size. The macro TPMC821_NEXT_SEGMENT(pSeg) (also defined in
tpmc821.h) calculates a pointer to the beginning of the following segment in the buffer.
Both macros in combination should be used to assemble a read data buffer for the
desired read request. The end of the read buffer is specified by a segment with type of
TPMC821_END.
Please refer to the following example to see how to assemble a correct read buffer.

EXAMPLE

#include “tpmc821.h

int fd;

int result;

unsigned long size;

TPMC821_SEGMENT* pSeg;

TPMC821_RWBUF* pReadBuf;

pReadBuf = (TPMC821_RWBUF*)malloc(100);

// [1]

size.= 0;

pSeg = (TPMC821_SEGMENT*)&pReadBuf->SegmentBuffer;

…

TPMC821-SW-82 – Linux Device Driver Page 15 of 34

…

// [2]

pSeg->ItemType = TPMC821_BYTE;

pSeg->ItemNumber = 4;

pSeg->DataOffset = 0;

size += TPMC821_SEGMENT_SIZE(pSeg); // add size of this segment

// [3]

pSeg = TPMC821_NEXT_SEGMENT(pSeg);

pSeg->ItemType = TPMC821_WORD; // same data read as word

pSeg->ItemNumber = 2;

pSeg->DataOffset = 0;

size += TPMC821_SEGMENT_SIZE(pSeg);

pSeg = TPMC821_NEXT_SEGMENT(pSeg); // same data read as 32bit-word

pSeg->ItemType = TPMC821_LWORD;

pSeg->ItemNumber = 1;

pSeg->DataOffset = 0;

size += TPMC821_SEGMENT_SIZE(pSeg);

// [4]

pSeg = TPMC821_NEXT_SEGMENT(pSeg); // End segment

pSeg->ItemType = TPMC821_END;

pSeg->ItemNumber = 0;

pSeg->DataOffset = 0;

size += TPMC821_SEGMENT_SIZE(pSeg);

// [5]

pReadBuf->Size = size;

result = ioctl(fd, TPMC821_IOCX_READ, (char*)pReadBuf);

if (result >= 0) {

/* read operation successful. */

} else {

/* read operation failed. */

}

This example reads the first four bytes of the DTA IN area within three segments with different types
(byte, word and 32bit-word). If the first 4 bytes of the DTA IN area contain significant values you can
realize the effect of byte swapping words and longwords (see also tpmc821exa.c).

[1] After opening the device, the variable size is initialized with 0 and the segment pointer is set to
begin of the segment buffer. Be sure that the size of the buffer is large enough to hold all segments.

TPMC821-SW-82 – Linux Device Driver Page 16 of 34

[2] The first segment contains 4 bytes read from offset 0 of the DTA IN area. After initializing of the
segment we update the buffer size using the TPMC821_SEGMENT_SIZE macro. Do not use sizeof()
instead.

[3] Before initializing the next segment we calculate a new segment pointer using the
TPMC821_NEXT_SEGMENT macro. This macro simply adds the size of the previous segment to the
previous segment pointer and returns the new segment pointer. The new segment starts without a gap
direct after the previous segment.

[4] The end of the segment list is specified by a segment with item type TPMC821_END. If this
segment is missing the read request fails. Be sure that the size of the end segment is included in the
total size of the segment list.

[5] The ioctl() call transfers the request to the driver. The driver interprets the segment list and fills the
corresponding data arrays with new process data.

ERRORS

Error Code Description

EBUSY Device is busy with a pending job. Try again later.

EIO Hardware error (Interbus not running), or the driver initialization
was not completed.

EFAULT Error copying data to or from user area.

ENOMEM Error allocating internal memory to hold user data.

EINVAL Supplied data buffer contains invalid segment data. The total
size may be exceeded, or an unknown item type was specified.

ETIME The allowed time to finish the request has elapsed.

TPMC821-SW-82 – Linux Device Driver Page 17 of 34

3.3.2 TPMC821_IOCX_WRITE

NAME

TPMC821_IOCX_WRITE – Write new process data to the “DTA OUT” area

DESCRIPTION

This ioctl function writes new data to the DTA OUT area. A pointer to the caller’s message buffer
(TPMC821_RWBUF) is passed by the parameter argp to the driver. This buffer contains variable
length segments of data type TPMC821_SEGMENT. Each segment holds an exact description of the
embedded data like data type, number of data items, offset in the DTA OUT area and the data items
to write.

This relative complex mechanism has two advantages. First you can write occasional placed data
items without writing data in the whole DAT OUT buffer and second, word and long word organized
data items can be automatically byte swapped by the driver. Remember Intel x86 CPU’s use little-
endian and Motorola respective the INTERBUS use big-endian alignment of data words.

typedef struct

{

unsigned long Size;

TPMC821_SEGMENT SegmentBuffer;

} TPMC821_RWBUF, *PTPMC821_RWBUF;

Size

Receives the total size of the variable structure buffer.

SegmentBuffer

This is the variable sized data buffer, specified as follows:

typedef struct {

unsigned short ItemNumber;

unsigned short ItemType;

unsigned short DataOffset;

union {

unsigned char byte[1];

unsigned short word[1];

unsigned int lword[1];

} u;

} TPMC821_SEGMENT, *PTPMC821_SEGMENT;

ItemNumber

Specifies the number of items of the specified type in the data array. In other words it
specifies the size of the array u.byte[], u.word[] or u.lword[].

TPMC821-SW-82 – Linux Device Driver Page 18 of 34

ItemType

Specifies the data type of the embedded process data. Note, every data item in the
segment must have the same type. The following values are possible:

Value Description

TPMC821_END Specifies the last segment in the list. No data follows.

TPMC821_BYTE Specifies a segment with byte data. The union part byte[] will
be used.

TPMC821_WORD Specifies a segment with word data. The union part word[]
will be used and all words of the array will be byte swapped.

TPMC821_LWORD Specifies a segment with 32-bit word data. The union part
lword[] will be used and all 32-bit words will be byte
swapped.

DataOffset

Specifies a byte offset from the beginning of the DTA OUT area where the new data
should be written.

u

The union u contains three arrays. The size of these dynamic expandable arrays
depends on the number of data items to write. Because the size of this arrays is only
well-known at run-time you should never use the sizeof() function to determine the size of
the segment structure.
The macro TPMC821_SEGMENT_SIZE(pSeg) (defined in tpmc821.h) delivers the
correct structure size. The macro TPMC821_NEXT_SEGMENT(pSeg) (also defined in
tpmc821.h) calculates a pointer to the begin of the following segment in the buffer. Both
macros in combination should be used to assemble a write data buffer for the desired
write request. The end of the write buffer is specified by a segment with type of
TPMC821_END.
Please refer to the next example to see how to assemble a correct write buffer.

EXAMPLE

#include “tpmc821.h”

int fd;

int result;

unsigned long size;

TPMC821_SEGMENT* pSeg;

TPMC821_RWBUF* pWriteBuf;

pWriteBuf = (TPMC821_RWBUF*)malloc(100);

// [1]

size = 0;

pSeg = (TPMC821_SEGMENT*)&pWriteBuf->SegmentBuffer;

…

TPMC821-SW-82 – Linux Device Driver Page 19 of 34

…

// [2]

pSeg->ItemType = TPMC821_BYTE;

pSeg->ItemNumber = 4;

pSeg->DataOffset = 0;

pSeg->u.byte[0] = 1;

pSeg->u.byte[1] = 2;

pSeg->u.byte[2] = 3;

pSeg->u.byte[3] = 4;

size += TPMC821_SEGMENT_SIZE(pSeg); // add size of this segment

// [3]

pSeg = TPMC821_NEXT_SEGMENT(pSeg); // calculate next pointer

pSeg->ItemType = TPMC821_LWORD;

pSeg->ItemNumber = 1;

pSeg->DataOffset = 4;

pSeg->u.lword[0] = 0xAA55BB66;

size += TPMC821_SEGMENT_SIZE(pSeg);

// [4]

pSeg = TPMC821_NEXT_SEGMENT(pSeg); // End segment

pSeg->ItemType = TPMC821_END;

pSeg->ItemNumber = 0;

pSeg->DataOffset = 0;

size += TPMC821_SEGMENT_SIZE(pSeg);

// [5]

pWriteBuf->Size = size;

result = ioctl(fd, TPMC821_IOCX_WRITE, (char*)pWriteBuf);

if (result >= 0) {

/* write operation successful. */

} else {

/* write operation failed. */

}

This example does the following (see also tpmc821exa.c).

[1] The variable size is initialized with 0 and the segment pointer is set to the beginning of the
segment buffer. Be sure that the size of the buffer is large enough to hold all segments.

[2] The first segment contains 4 bytes to write from offset 0 of the DTA OUT area. After initializing of
the segment we update the buffer size using the TPMC821_SEGMENT_SIZE macro. Do not use
sizeof() instead.

[3] Before initializing the next segment we calculate a new segment pointer using the
TPMC821_NEXT_SEGMENT macro. This macro simply adds the size of the previous segment to
the previous segment pointer and returns the new segment pointer. The new segment starts

TPMC821-SW-82 – Linux Device Driver Page 20 of 34

without a gap direct after the previous segment. The 32-bit word data item will be byte-swapped
before writing to the DTA OUT area.

[4] The end of the segment list is specified by a segment with item type TPMC821_END. If this
segment is missing the read request fails. Be sure that the size of the end segment is included in
the total size of the segment list.

[5] The ioctl() call transfers the request to the driver. The driver interprets the segment list and writes
the contents of the data array to the specified locations in the DTA OUT area.

The following example displays the memory layout of the segment buffer and the DTA OUT area after
a successful write operation.

Segment values:

1
st

segment:

ItemNumber: 4
ItemType: TPMC821_BYTE
ItemOffset: 0x0
data: 0x01, 0x02, 0x03, 0x04

2
nd

segment:

ItemNumber: 1
ItemType: TPMC821_LWORD
ItemOffset: 0x0
data: 0xAA55BB66

End segment:

ItemNumber: 0
ItemType: TPMC821_END
ItemOffset: 0x0
data: (none)

The segment buffer has the following layout:

Offset +0 +1 +2 +3 +4 +5 +6 +7

+0x00 0x04 0x00 0x01 0x00 0x00 0x00 0x01 0x02

+0x08 0x03 0x04 0x01 0x00 0x04 0x00 0x04 0x00

+0x10 0x66 0xBB 0x55 0xAA 0x00 0x00 0x00 0x00

+0x18 0x00 0x00 x x x x x x

The DTA OUT area of the TPMC821 (after writing):

Offset +0 +1 +2 +3 +4 +5 +6 +7

+0x00 0x01 0x02 0x03 0x04 0xAA 0x55 0xBB 0x66

+0x08 x x x x x x x x

TPMC821-SW-82 – Linux Device Driver Page 21 of 34

ERRORS

Error Code Description

EBUSY Device is busy with a pending job. Try again later.

EIO Hardware error (Interbus not running), or the driver initialization
was not completed.

EFAULT Error copying data to or from user area.

ENOMEM Error allocating internal memory to hold user data.

EINVAL Supplied data buffer contains invalid segment data. The total size
may be exceeded, or an unknown item type was specified.

ETIME The allowed time to finish the request has elapsed.

TPMC821-SW-82 – Linux Device Driver Page 22 of 34

3.3.3 TPMC821_IOCS_BITCMD

NAME

TPMC821_IOCS_BITCMD - Execute a standard function bit command

DESCRIPTION

This ioctl function allows the execution of various frequently used commands and command
sequences without using mailbox commands. A pointer to the caller's parameter buffer
(TPMC821_BITCMDBUF) is passed by the argument pointer argp to the driver.

typedef struct {

unsigned short FunctionBit;

unsigned short FunctionParam;

} TPMC821_BITCMDBUF, *PTPMC821_BITCMDBUF;

FunctionBit

Specifies the bit number [0...6] of the standard function to execute.

FunctionParam

Specifies an optional parameter for the standard function.

Additional information about standard function bits and parameter values can be found in the User
Manual – INTERBUS Generation 4 Master Board, which is part of the TPMC821 Engineering Manual.

EXAMPLE

#include “tpmc821.h”

int fd;

int result;

TPMC821_BITCMDBUF BitCmdBuf;

BitCmdBuf.FunctionBit = 0; // Start_Data_Transfer_Req (1<<0)

BitCmdBuf.FunctionParam = 0; // none

result = ioctl(fd, TPMC821_IOCS_BITCMD, (char*)&BitCmdBuf);

if (result >= 0) {

/* operation successful. */

} else {

/* operation failed. */

}

TPMC821-SW-82 – Linux Device Driver Page 23 of 34

ERRORS

Error Code Description

EBUSY Device is busy with a pending job. Try again later.

EIO Hardware error (Interbus not running), or the driver initialization
was not completed.

EFAULT Error copying data to or from user area.

EINVAL Invalid Bit number specified.

ETIME The allowed time to finish the request has elapsed.

TPMC821-SW-82 – Linux Device Driver Page 24 of 34

3.3.4 TPMC821_IOCX_MBOXCMD, _NOWAIT

NAME

TPMC821_IOCX_MBOXCMD - Execute a mailbox command with or without waiting for confirmation

DESCRIPTION

This ioctl function is used to transmit messages from the host system to the IBS master (SSGI box 0).
If an answer message is expected the received message (SSGI box 1) is copied direct to the user
receive buffer.

A pointer to the caller's parameter buffer (unsigned short array) is passed by the parameter pointer
argp to the driver.

Transmit and receive buffers are organized as follows (valid for all services):

Word 1

Word 2

Word 3

Word 4

...

Service_Code

Parameter_Count

Parameter

Parameter

...

Parameter

The control function TPMC821_IOCX_MBOXCMD_NOWAIT returns immediately to the caller without
waiting for an answer. This control function is used only for reset and unconfirmed PCP services.

Additional information about supported services can be found in the IBS User Manuals which are part
of the TPMC821 Engineering Manual.

EXAMPLE

#include “tpmc821.h”

int fd;

int result;

unsigned short RequestPar[100];

RequestPar[0] = 0x0710; // Create Configuration Service

RequestPar[1] = 1; // one parameter follow

RequestPar[2] = 1; // number of frames to generate

…

TPMC821-SW-82 – Linux Device Driver Page 25 of 34

…

result = ioctl(fd, TPMC821_IOCX_MBOXCMD, (char*)&RequestPar);

if (result >= 0) {

/* operation successful. */

} else {

/* operation failed. */

}

ERRORS

Error Code Description

EBUSY Device is busy with a pending job. Try again later.

EIO Hardware error (Interbus not running), or the driver initialization
was not completed.

EFAULT Error copying data to or from user area.

ENOMEM Error allocating internal memory to hold user data.

EINVAL Invalid parameter specified, max. size exceeded.

ETIME The allowed time to finish the request has elapsed.

TPMC821-SW-82 – Linux Device Driver Page 26 of 34

3.3.5 TPMC821_IOCG_GETDIAG

NAME

TPMC821_IOCG_GETDIAG - Get diagnostic information from the device

DESCRIPTION

This ioctl function returns a structure with various diagnostic information to the caller.

A pointer to the caller's parameter buffer (TPMC821_DIAGBUF) is passed by the parameter pointer
argp to the driver.

typedef struct {

unsigned short SysfailReg;

unsigned short ConfigReg;

unsigned short DiagReg;

unsigned short HardwareFailure;

unsigned short InitComplete;

} TPMC821_DIAGBUF, *PTPMC821_DIAGBUF;

SysfailReg, ConfigReg, DiagReg

Returns the actual values of the corresponding hardware register in the coupling memory:
Status Sysfail Register, Configuration Register and Master Diagnostic Status Register. The
meaning of every bit in these registers is described in the User Manual – INTERBUS
Generation 4 Master Board.

HardwareFailure

If the content is TRUE the IBS master has detected a hardware error. In this case the driver will
not accept data transfer or message box commands until this state is left by the
TPMC821_HWFAIL_RESET command.
Note. A hardware failure could also occur after execution of the mailbox command
Reset_Controller_Board.

InitComplete

This parameter is TRUE if the INTERBUS firmware has completed initialization.

EXAMPLE

#include “tpmc821.h”

int fd;

int result;

TPMC821_DIAGBUF DiagBuf;

…

TPMC821-SW-82 – Linux Device Driver Page 27 of 34

…

result = ioctl(fd, TPMC821_IOCG_GETDIAG, (char*)&DiagBuf);

if (result >= 0) {

printf("\nRead Diagnostic Information successful\n");

printf("Status Sysfail Register : %04Xhex\n",

DiagBuf.SysfailReg);

printf("Configuration Register : %04Xhex\n",

DiagBuf.ConfigReg);

printf("Master Diagnostic Register : %04Xhex\n",

DiagBuf.DiagReg);

printf("Hardware Failure : %s\n",

DiagBuf.HardwareFailure ? "TRUE" : "FALSE");

printf("Initialization done : %s\n",

DiagBuf.InitComplete ? "TRUE" : "FALSE");

} else {

// process error

}

ERRORS

Error Code Description

EFAULT Error copying data to or from user area.

TPMC821-SW-82 – Linux Device Driver Page 28 of 34

3.3.6 TPMC821_IOCS_CONFIG

NAME

TPMC821_IOCS_CONFIG - Configure the device driver

DESCRIPTION

This ioctl function announces a new operating mode to the driver and changes timeout values for
mailbox and data transfer functions. Every time the host changes the operating mode (SetValue
mailbox message) the driver must be introduced about that so it can handle following data transfer
message in the right manner (see also Automatic Configuration in the example application)..

A pointer to the caller's parameter buffer (TPMC821_CONFIGBUF) is passed by the parameter
pointer argp to the driver.

typedef struct {

unsigned short OperatingMode;

unsigned long DataTimeout;

unsigned long MailboxTimeout;

} TPMC821_CONFIGBUF, *PTPMC821_CONFIGBUF;

OperatingMode

Specifies the new operating mode. Valid operating modes are:

Value Description

TPMC821_ASYNC In asynchronous operating mode, the process data is updated
by the INTERBUS firmware synchronously with the
INTERBUS data cycles, but asynchronously with hosts’
access to the process image.
This operating mode is default after RESET

TPMC821_ASYNC_LOCK In this asynchronous operating mode the hosts’ access to the
process data is locked for reading and writing consistent data.

TPMC821_BUS_SYNC Bus synchronous operating mode

TPMC821_PROG_SYNC Program synchronous operating mode

Additional information about operating modes can be found in the User Manual – INTERBUS
Generation 4 Master Board, which is part of the TPMC821 Engineering Manual.

DataTimeout

Specifies a new timeout value (in seconds) for all following read and write commands from and
to the DTA IN and DTA OUT area. The default timeout value is 2 seconds.

MailboxTimeout

Specifies a new timeout value (in seconds) for all following mailbox and function bit commands.
The default timeout value is 10 seconds.

TPMC821-SW-82 – Linux Device Driver Page 29 of 34

EXAMPLE

#include “tpmc821.h”

int fd;

int result;

TPMC821_CONFIGBUF ConfigBuf;

// Setup new operating mode in the IBS firmware ...

ConfigBuf.OperatingMode = TPMC821_ASYNC_LOCK;

ConfigBuf.DataTimeout = 1;

ConfigBuf.MailBoxTimeout = 20;

result = ioctl(fd, TPMC821_IOCS_CONFIG, (char*)&ConfigBuf);

if (result < 0) {

/* handle ioctl error */

}

ERRORS

Error Code Description

EFAULT Error copying data to or from user area.

EINVAL Invalid parameter specified.

TPMC821-SW-82 – Linux Device Driver Page 30 of 34

3.3.7 TPMC821_IOC_HOSTFAIL_SET

NAME

TPMC821_IOC_HOSTFAIL_SET - Set a serious host system failure interrupt

DESCRIPTION

This ioctl function signals a serious host system failure to the TPMC821. On assertion of this host fail
interrupt the TPMC821 resets all INTERBUS outputs and switch on the HF LED on the TPMC821
control panel.

If the driver was terminated the host system failure is automatically set by the driver.

The optional argument pointer can be omitted for this ioctl function.

EXAMPLE

#include “tpmc821.h”

int fd;

int result;

result = ioctl(fd, TPMC821_IOC_HOSTFAIL_SET);

if (result < 0) {

/* handle ioctl error */

}

TPMC821-SW-82 – Linux Device Driver Page 31 of 34

3.3.8 TPMC821_IOC_HOSTFAIL_RESET

NAME

TPMC821_IOC_HOSTFAIL_RESET - Reset the host system failure interrupt

DESCRIPTION

This ioctl function resets the host system failure state in the TPMC821.

The optional argument pointer can be omitted for this ioctl function.

EXAMPLE

#include “tpmc821.h”

int fd;

int result;

result = ioctl(fd, TPMC821_IOC_HOSTFAIL_RESET);

if (result < 0) {

/* handle ioctl error */

}

TPMC821-SW-82 – Linux Device Driver Page 32 of 34

3.3.9 TPMC821_IOC_HWFAIL_RESET

NAME

TPMC821_IOC_HWFAIL_RESET - Reset the device hardware failure flag

DESCRIPTION

This ioctl function resets the hardware failure flag in the device driver. The hardware failure flag was
set after reception of a service interrupt request from the TPMC821.

The optional argument pointer can be omitted for this ioctl function.

Additional information about the service interrupt request can be found in the TPMC821 User Manual
and User Manuals for the INTERBUS Generation 4 Master Board which is part of the TPMC821
Engineering Manual.

EXAMPLE

#include “tpmc821.h”

int fd;

int result;

result = ioctl(fd, TPMC821_IOC_HWFAIL_RESET);

if (result < 0) {

/* handle ioctl error */

}

TPMC821-SW-82 – Linux Device Driver Page 33 of 34

4 Diagnostic
If the TPMC821 device driver does not work properly it is helpful to get some status information from
the driver respective kernel.

To get additional debug output from the driver enable the following symbols in ‘tpmc821.c’ by
replacing “#undef” with “#define”:

#define DEBUG_TPMC821

#define DEBUG_TPMC821_INTR

Please refer to your distribution documents to see how to dump the debug logs, E.g. for Fedora
distributions: journalctl –f

…
Aug 04 15:02:56 localhost.tews.local kernel: TEWS TECHNOLOGIES -
TPMC821 INTERBUS Master G4 PMC - version 1.1.0 (2017-08-02)
Aug 04 15:02:56 localhost.tews.local kernel:
TPMC821: Probe new device (vendor=0x1498, device=0x0335, type=821)

…

The Linux /proc file system provides information about kernel, resources, driver, devices and so on.
The following screen dumps display information of a correct running TPMC821 driver (see also the
proc man pages).

cat /proc/tews-tpmc821 /* advanced status information */

TEWS TECHNOLOGIES - TPMC821 INTERBUS Master G4 PMC - version 1.1.0 (2017-
08-02)

Supported modules: TPMC821

Registered TPMC821 modules:

/dev/tpmc821_0

Operating Mode: TPMC821_ASYNC

DataTimeout : 2

MailboxTimeout: 10

lspci -v

… /* TPMC821 */

04:01.0 Network controller: TEWS Technologies GmbH Device 0335

Subsystem: TEWS Technologies GmbH Device 000a

Flags: medium devsel, IRQ 16

Memory at feb9fc00 (32-bit, non-prefetchable) [size=128]

I/O ports at e880 [size=128]

Memory at feb9e000 (32-bit, non-prefetchable) [size=4K]

Memory at feb9f800 (32-bit, non-prefetchable) [size=16]

Kernel driver in use: TEWS TECHNOLOGIES - TPMC821 INTERBUS Master
G4 PMC -

…

TPMC821-SW-82 – Linux Device Driver Page 34 of 34

cat /proc/interrupts

CPU0

0: 871862 IO-APIC-edge timer

…

12: 129 IO-APIC-edge i8042

14: 15701 IO-APIC-edge ide0

15: 30854 IO-APIC-edge ide1

17: 852832 IO-APIC-fasteoi radeon@pci:0000:01:00.0, TPMC821

18: 8895 IO-APIC-fasteoi eth0

…

cat /proc/iomem

… /* TPMC821 */

feb9e000-feb9efff : 0000:04:01.0

feb9e000-feb9efff : TPMC821

feb9f800-feb9f80f : 0000:04:01.0

feb9f800-feb9f80f : TPMC821

feb9fc00-feb9fc7f : 0000:04:01.0

feb9fc00-feb9fc7f : TPMC821

feba0000-febbffff : 0000:04:00.0

…

	1	Introduction
	2	Installation
	2.1	Build and Install the Device Driver
	Uninstall the Device Driver
	2.3	Install the Device Driver in the Running Kernel
	2.4	Remove Device Driver from the Running Kernel
	Change Major Device Number

	3	Device Input/Output Functions
	3.1	open
	3.2	close
	3.3	ioctl
	3.3.1	TPMC821_IOCX_READ
	3.3.2	TPMC821_IOCX_WRITE
	3.3.3	TPMC821_IOCS_BITCMD
	3.3.4	TPMC821_IOCX_MBOXCMD, _NOWAIT
	3.3.5	TPMC821_IOCG_GETDIAG
	3.3.6	TPMC821_IOCS_CONFIG
	3.3.7	TPMC821_IOC_HOSTFAIL_SET
	3.3.8	TPMC821_IOC_HOSTFAIL_RESET
	3.3.9	TPMC821_IOC_HWFAIL_RESET

	4	Diagnostic

