The Embedded I/O Company

TPMC861-SW-42

VxWorks Device Driver
4 Channel Isolated Serial Interface (RS422/RS485)

Version 5.1.x

User Manual

Issue 5.1.0
August 2021

TEWS TECHNOLOGIES GmbH
Am Bahnhof 7 25469 Halstenbek, Germany
Phone: +49 (0) 4101 4058 0 Fax: +49 (0) 4101 4058 19
e-mail: info@tews.com www.tews.com

TPMC861-SW-42
VxWorks Device Driver
4 Chan. Isolated Serial Interface (RS422/RS485)

Supported Modules:

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and

TPMC861
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.
TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.
©2001-2021 by TEWS TECHNOLOGIES GmbH
Issue Description Date
1.0 First Issue July 7, 2001
1.1 Overrun Error added February 18, 2001
1.2 Mark/Space Parity added June 26, 2003
2.0.0 New File List, tpmc861Drv() and tpmc861DevCreate() have changed, August 14, 2006
Description of tpmc861Pcilnit() added, Advanced description of the
ioctl() function codes
2.0.1 New Address TEWS LLC October 10, 2006
2.0.2 Description of BSP dependencies February 12, 2007
2.1.0 Description of default configuration, Description how to include device July 6, 2009
driver into VxWorks projects modified, Address TEWS LLC removed
3.0.0 New version of driver, Legacy and VxBus-Support August 30, 2010
3.1.0 File list modified, Document layout revision. September 6, 2011
4.0.0 New ioctl function FIO_EXAR16XXX_CHANNEL_INFO, new chapter March 1, 2012
Configuration of FIFO-Trigger-Levels
5.0.0 VxWorks 7 support added March 28, 2017
Legacy I/O Functions removed from VxBus support
5.1.0 ioctl for RTP-Support August 30, 2021

TPMC861-SW-42 — VxWorks Device Driver

Page 2 of 39

5

INTRODUCTION

1.1

2.1 Device Driver Configuration ParametersS........cccocccvveeeieeeiiiiciiineeeeee e
2.1.1 Assignment of POrt NamMeES.......cccoviiiiiiiiiieeeii e sssiveeee e e
2.1.2 SW-FIFO Configurationcccceeeiiiiiiiiiiee et svieee e e

2.2 Default Port Configurationcccceeeee i

2.3 ENabIe RTP-SUPPOIT ...eeiiiiiiiie ittt

2.4 Compatibility to pre-VxBus Applications ..o

LEGACY I/O SYSTEM FUNCTIONS. ...,

31 EPMICBBLIDIV ..ttt

3.2 tPMCBOBLIDEVCIEALEeeeieiiieiee ittt ettt

3.3 IPMCBBLPCIHINITeeeiee i

3u4 EPMICBBLINTT ..eeiiiiiiiiee e

BASIC I/O FUNCTIONS ...

e T o T o = o PRSPPI

4.2 ClOSE .o

N I =T To [TP TR PPTRPPRUPTN

. N YN TP UT R PPTRPPRUPTN

4.5 TOCH .eeiiiiee e
451 FIOBAUDRATE ..ottt e
452 FIO_EXARLIGXXX_DATABITS ...ooiiiiiieeiieee e
453 FIO_EXARLIBXXX_STOPBITSooiiiiiiiiiiiiiee et
454 FIO_EXARLIBXXX_PARITY .oociiiiiie ettt
455 FIO_EXAR1I6XXX_SETBREAKcccciiie it
456 FIO_EXAR16XXX_CLEARBREAKccooiiiieiiiie et
457 FIO_EXAR16XXX_CHECKBREAK.........cccovveiiiiieeeciiee et
458 FIO_EXAR16XXX_CHECKERRORS........ccccceviiiieeiiiie e
459 FIO_EXAR16XXX_RECONFIGUREcccceeiiiiiieiiiieeeieee e
4510 FIO_EXARLIBXXX_FIFO ..iiiiiiiiiie et
4511 FIO_EXAR16XXX_CHANNEL_INFO....cooiiiiiiiiiieeeiiee e

APPENDIX ..o

5.1 Configuration of FIFO-Trigger-Levels........ccccoiiiniiiiiiie e

Table of Contents

B VA TeTCl] VA= G

VXBUS DRIVER SUPPORT

TPMC861-SW-42 — VxWorks Device Driver

Page 3 of 39

1 Introduction

1.1 Device Driver

The TPMC861-SW-42 VVxWorks device driver software allows the operation of the supported modules
conforming to the VxWorks 1/O system specification. This includes a device-independent basic 1/0
interface with open(), close(), read(), write(), and ioctl() functions and a buffered I/O interface (fopen(),
fclose(), fprintf(), fscanf(), ...).

Special 1/0 operation that do not fit to the standard 1/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

The TPMC861-SW-42 release contains independent driver sources for the old legacy (pre-VxBus) and
the new VxBus-enabled driver model. The VxBus-enabled driver is recommended for new
developments with later VxWorks 6.x release and mandatory for VxWorks SMP systems.

The TPMCB861 driver includes the following functions supported by the VxWorks tty driver support
library for pre-VxBus systems or the sio driver library for VxBus compatible systems.

ring buffering of input and output

raw mode

optional line mode with backspace and line-delete functions
optional processing of X-on/X-off

optional RETURN/LINEFEED conversion

optional echoing of input characters

optional stripping of the parity bit from 8 bit input

optional special characters for shell abort and system restart

VVVVVVYVYY

Additionally the following optional functions:

select FIFO triggering point

use 5...8 bit data words

use 1, 1.5 or 2 stop bits

optional even or odd parity

changing baudrates

reading board information and PCI location

VVYVYVVY

The TPMC861-SW-42 supports the modules listed below:

TPMC861-10 4 Channel Isolated Serial Interface (RS422/RS485) (PMC)

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TEWS TECHNOLOGIES VxWorks Device Drivers - Installation Guide
TPMC861 User Manual

Programmer’s Guide: I/O System — Serial I/O devices

Kernel Programmer’s Guide: I/O System — Serial /0 devices

TPMC861-SW-42 — VxWorks Device Driver Page 4 of 39

2\V/XBus Driver Support

The TPMC861 will be fully integrated to the VxWorks system and the devices will be automatically
created when booting VxWorks.

2.1 Device Driver Configuration Parameters

There are parameters to configure the names of the devices and to configure the size of the Software-
FIFOs allocated for the devices.

The TPMC861 parameters can be modified in the image project configuration. The parameter list can
be found in a folder below of the TPMC861 driver include.

2.1.1 Assignment of Port Names

The port names are assigned automatically when the ports are created during start-up. The assigned
port names are defined by configuration parameters which may be adapted before creating the final
project image.

The parameter TPMC861_DEV_NAME specifies the prefix of the devices. Default is “/tpmc861/”
The parameter TPMC861_DEV_NUM_START specifies the first assigned device number. Default is O.
The device names will be built as <TPMC861_DEV_NAME><(TPMC861_DEV_NUM_START + n)>.

It is necessary, that the parameters TPMC861_DEV_NAME and TPMC861_DEV_NUM_START
are chosen that there is a unique naming for all devices, otherwise there may undesirable
effects. Please consider this especially if the TPMC861 naming should look like the naming of
local serial ports (“/tyCo/<n>").

For example a system with one TPMC861 (4 channels) will assign the following device names, if the
default parameters (shown above) are used:

/tpmc861/0 | 1stchannel of TPMC861

/tpmc861/1 | 2n channel of TPMC861

/tpmc861/2 | 3 channel of TPMC861

/tpmc861/3 | 4% channel of TPMC861

TPMC861-SW-42 — VxWorks Device Driver Page 5 of 39

If the parameters are modified, e.g. to use the naming of the local serial ports (e.g. 2 local serial ports)
(TPMC861_DEV_NAME = “/tyCo/” and TPMC861_DEV_NUM_START = 2) the following device
names will be assigned to the TPMC861 devices:

ItyCol2 1st channel of TPMC861
ltyCol/3 2" channel of TPMC861
ftyCol4 3rd channel of TPMC861
ItyCol5 4t channel of TPMC861

If there is more than one TPMCB861 board installed, the assignment of the channel numbers to the
boards depends on the search order of the system, but all the channels of one board variant will follow
up in a row. For example a system with two TPMC861 (4 channels) may assign the following two
device names table. (default settings)

/tpmc861/0 | 1stchannel of 1t TPMC861
/tpmc861/1 | 2" channel of 1st TPMC861
/tpmc861/2 | 3 channel of 1t TPMC861
ltpmc861/3 | 4" channel of 15t TPMC861
/tpmc861/4 | 1st channel of 2" TPMC861
/tpmc861/5 | 2" channel of 2nd TPMC861
/tpmc861/6 | 3 channel of 2" TPMC861
/tpmc861/7 | 4" channel of 2" TPMC861

After booting the available devices can be checked with devs(). This function will return a list of all
created devices.

2.1.2 SW-FIFO Configuration

The parameters TPMC861_RX_SW_FIFO_SIZE and TPMC861_RX SW_FIFO_SIZE specify the size
of receive and transmit software FIFO in Bytes. Depending on the application it might be necessary to
increase the size, for example if the application collects data over some time or if large “packets” shall
be send or received.

The default value is 2048 Byte for both FIFOs.

TPMC861-SW-42 — VxWorks Device Driver Page 6 of 39

2.2 Default Port Configuration

The driver will create the port with the following default configuration:

» 9600 Baud
» 8 Data- and 1 Stopbit
» FIFO enabled (Triggerlevels: Rx =56 — Tx = 8)

For further information of setting the FIFO-trigger-levels, please refer to 5.1 Configuration of
FIFO-Trigger-Levels.

2.3 Enable RTP-Support

Using TPMCB861 devices tunneled from RTPs is implemented. For this the “TEWS TPMC861 IOCTL
command validation” must be enabled in system configuration.

If “tpmc861.h” is included into the sources of RTP-Projects the definition of TVXB_RTP_CONTEXT
must be added to the project. (Find more detailed information in “TEWS TECHNOLOGIES VxWorks
Device Drivers - Installation Guide”).

All legacy functions, functions for version compatibility and debugging functions are not
usable from RTPs.

24 Compatibility to pre-VxBus Applications

The VxBus driver is compatible to the legacy version of this driver. The only point which must be
guaranteed is, that the driver initialization is made via tpmc861Init() and not with tpmc861Drv() and
tpmc861DevCreate().

Legacy compatible initialization function

STATUS tpmc861Init

(
int *firstChanNo,
int *lastChanNo

This routine just returns the number of the first (firstChanNo) and last (lastChanNo) port number
assigned to the TPMC861 driver. The devices will be named ‘/tpmc861/<firstChanNo>" up
to ‘/tpmc861/<lastChanNo>’

This function has been created for compatibility to the legacy driver. It allows usage of the same
example for both legacy and VxBus systems. It is not necessary to call this function in custom
application.

TPMC861-SW-42 — VxWorks Device Driver Page 7 of 39

3 Legacy I/O System Functions

This chapter describes the legacy driver-level interface to the 1/0 system. The purpose of these
functions is to install the driver in the 1/0 system, add and initialize devices.

The legacy I/0O system functions are only relevant for the legacy TPMC861 driver. For the
VxBus-enabled TPMC861 driver, the driver will be installed automatically in the I/O system and
devices will be created as needed for detected modules.

3.1 tpmc861Drv

NAME

tpmc861Drv - installs the TPMC861 driver in the I/O system

This function is not implemented for systems supporting VxBus.

SYNOPSIS
#include “tpmc861.h”

STATUS tpmc861drv
(

)

void

DESCRIPTION

This function searches for devices on the PCI bus, installs the TPMC861 driver in the 1/O system.

A call to this function is the first thing the user has to do before adding any device to the
system or performing any I/O request.

TPMC861-SW-42 — VxWorks Device Driver Page 8 of 39

EXAMPLE

#include '"tpmc861.h”

STATUS result;

result = tpmc861Drv();
if (result == ERROR)

{

/* Error handling */
}
RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

Error Code Description
ENXIO No TPMC861 found
SEE ALSO

VxWorks Programmer’s Guide: I/0O System

TPMC861-SW-42 — VxWorks Device Driver

Page 9 of 39

3.2 tpmc861DevCreate

NAME

tpmc861DevCreate — Add a TPMC861 device to the VxWorks system

SYNOPSIS
#include “tpmc861.h”

STATUS tpmc861DevCreate

(
char *name,
int glbChanNo,
int rdBufSize,
int wrtBufSize,
void *devConf

)

DESCRIPTION

This routine creates a device on a specified serial channel that will be serviced by the TPMC861
driver.

This function must be called before performing any I/O request to this device.

This function is not implemented for systems supporting VxBus.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devldx
This index number specifies the device to add to the system.

If more than one modules are installed the channel numbers will be assigned in the order the
VxWorks pciFindDevice() function will find the devices.

rdBufSize
This value specifies the size of the receive software FIFO.

wrtBufSize
This value specifies the size of the transmit software FIFO.

TPMC861-SW-42 — VxWorks Device Driver Page 10 of 39

devConf
This parameter is unused and should be set to NULL.

EXAMPLE

#include '"tpmc861.h~

STATUS result;

Create the device "/tpmc861/0" for the first device
1KB transmit and receive FIFO

___ */
result = tpmc861DevCreate(''/tpmc861/0",
0,
1024,
1024,
NULL);
if (result == 0K)
{
/* Device successfully created */
}
else
{
/* Error occurred when creating the device */
}
RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGet().

Error code Description

S iosLib_ DEVICE_NOT_FOUND Driver has not been started,
or the specified channel has not been detected,
or channel structure has not been allocated

SEE ALSO

VxWorks Programmer’s Guide: 1/0 System

TPMC861-SW-42 — VxWorks Device Driver Page 11 of 39

3.3 tpmc861Pcilnit

NAME

tpmc861Pcilnit — Generic PCI device initialization

SYNOPSIS

void tpmc861Pcilnit()

DESCRIPTION

This function is required only for Intel x86 VxWorks platforms. The purpose is to setup the MMU
mapping for all required TPMC861 PCI spaces (base address register) and to enable the TPMC861
device for access.

The global variable tpmc861Status obtains the result of the device initialization and can be polled later
by the application before the driver will be installed.

Value Meaning

>0 Initialization successful completed. The value of tpmc861Status is equal to the
number of mapped PCI spaces

No TPMCB861 device found

<0 Initialization failed. The value of (tpmc861Status & OxFF) is equal to the number
of mapped spaces until the error occurs.

Possible cause: Too few entries for dynamic mappings in sysPhysMemDesc]].
Remedy: Add dummy entries as necessary (sysLib.c).

EXAMPLE

extern void tpmc861Pcilnit();

tpmc861Pcilnit();

TPMC861-SW-42 — VxWorks Device Driver Page 12 of 39

3.4 tpmc861init

NAME

tpmc861init — initialize TPMC861 driver and devices and return the assigned channel numbers

SYNOPSIS
#include “tpmc861.h"

STATUS tpmc861Init

(
int *firstDevldx,
int *lastDevldx
)
DESCRIPTION

This function is used by the TPMC861 example application to install the driver, to add all available
devices to the VxWorks system and to determine the assigned port names.

All software FIFOs (Receive / Transmit) will be configured with a size of 2KB.

The function calls tpmc861Drv() and tpmc861DevCreate(). The devices will be named with
‘ltpmc861/<n>’ where <n> specifies the channel.

After calling this function, it is not necessary to call tpmc861Drv() or tpmc861DevCreate()
explicitly.

PARAMETER

firstDevldx
Pointer where the lowest assigned device number for TPMC861 devices will be returned.

lastDevldx
Pointer where the highest assigned device number for TPMC861 devices will be returned.

TPMC861-SW-42 — VxWorks Device Driver Page 13 of 39

EXAMPLE

#include '"tpmc861.h~

STATUS result;

int FfirstNo;
int lastNo;
char devName[20];
int chanNo;

result = tpmc861Init(&FirstNo, &lastNo);

if (result == ERROR)

{
/* Error handling */
}
else
{
for (chanNo = FfirstNo; chanNo <= lastNo; chanNo++)
{
sprintf(devName, “/tpmc861/%d’”, chanNo);
fd = open(devName, ..);
}
}
RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

Error codes are only set by system functions. The error codes are stored in errno and can be read with
the function errnoGet().

See 3.1 and 3.2 for a description of possible error codes.

TPMC861-SW-42 — VxWorks Device Driver Page 14 of 39

4 Basic I/O Functions

4.1

open

NAME

open - open a device or file.

SYNOPSIS

int open

(
const char *name,
int flags,
int mode

)

DESCRIPTION

Before 1/0 can be performed to the TPMC861 device, a file descriptor must be opened by invoking the

basic I/O function open().

PARAMETER

name

Specifies the device which shall be opened.

For the legacy driver version, the name specified for the device (e.g. by tpmc861DevCreate())

must be used.

For the VxBus driver version the system assigned device name (‘/tpmc861/<n>") must be used.

flags
Not used

mode
Not used

TPMC861-SW-42 — VxWorks Device Driver

Page 15 of 39

EXAMPLE

int fd;

fd = open("/tpmc861/2", 0, 0);
if (fd == ERROR)

{

/* error handling */
}
RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual.

SEE ALSO

ioLib, basic I/O routine - open()

TPMC861-SW-42 — VxWorks Device Driver Page 16 of 39

4.2 close

NAME

close — close a device or file

SYNOPSIS
STATUS close
(

int fd
)
DESCRIPTION

This function closes opened devices.

PARAMETER

fd

This file descriptor specifies the device to be closed. The file descriptor has been returned by
the open() function.

EXAMPLE

int fd;
STATUS retval ;

retval = close(fd);
if (retval == ERROR)
{

/* error handling */

}

TPMC861-SW-42 — VxWorks Device Driver Page 17 of 39

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic I/O routine - close()

TPMC861-SW-42 — VxWorks Device Driver Page 18 of 39

4.3 read

NAME

read — read data from a specified device.

SYNOPSIS
int read
(
int fd,
char *buffer,
size t maxbytes
)
DESCRIPTION

This function can be used to read data from the device.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

buffer
This argument points to a user supplied buffer. The returned data will be filled into this buffer.

maxbytes
This parameter specifies the maximum number of read bytes (buffer size).

TPMC861-SW-42 — VxWorks Device Driver Page 19 of 39

EXAMPLE

#define BUFSIZE 100

int fd;

char buffer[BUFSI1ZE];

int retval ;

/)
Read data from TPMC861 device

retval = read(fd, buffer, BUFSIZE);

if (retval !'= ERROR)

{
printf(“%d bytes read\n”, retval);
3
else
{
/* handle the read error */
3
RETURNS

Number of bytes read or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual.

SEE ALSO

ioLib, basic I/O routine - read()

TPMC861-SW-42 — VxWorks Device Driver

Page 20 of 39

4.4 \write

NAME

write — write data from a buffer to a specified device.

SYNOPSIS

int write

(
int fd,
char *buffer,
size t nbytes

)

DESCRIPTION

This function can be used to write data to the device.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

buffer

This argument points to a user supplied buffer. The data of the buffer will be written to the
device.

nbytes
This parameter specifies the number of bytes to be written.

TPMC861-SW-42 — VxWorks Device Driver Page 21 of 39

EXAMPLE

int fd;
char buffer[] = “Hello World”;
int retval;
Y
Write data to a TPMC861 device

retval = write(fd, buffer, strlen(buffer));
if (retval '= ERROR)

{
printf(*%d bytes written\n”, retval);
¥
else
{
/* handle the write error */
}
RETURNS

Number of bytes written or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic 1/O routine - write()

TPMC861-SW-42 — VxWorks Device Driver Page 22 of 39

4.5 ioctl

NAME

ioctl - performs an 1/O control function.

SYNOPSIS

#include “tpmc861.h”

int ioctl

(
int fd,
int request,
EXAR16XXX_IOCTL_ARG_T arg

)

DESCRIPTION

Special 1/0 operation that do not fit to the standard basic I/O calls (read, write) will be performed by
calling the ioctl() function.
PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

TPMC861-SW-42 — VxWorks Device Driver Page 23 of 39

request

This argument specifies the function that shall be executed. The TPMC861 device driver uses
the standard tty driver support library tyLib. For details of supported ioctl functions see VxWorks
Reference Manual: tyLib and VxWorks Programmer's Guide: I1/O System. Following additional
functions are defined:

Function Description

FIO_EXAR16XXX DATABITS Set length of data word
FIO_EXAR16XXX_STOPBITS Set length of the stop bit
FIO_EXAR16XXX_PARITY Set parity checking mode
FIO_EXAR16XXX_SETBREAK Set Break signal
FIO_EXAR16XXX_CLEARBREAK Release Break signal

FIO_EXAR16XXX CHECKBREAK Check if a Break signal has been detected

FIO_EXAR16XXX CHECKERRORS Get error state of the device
FIO_EXAR16XXX_ RECONFIGURE Reconfigure device with the default parameters

FIO_EXAR16XXX_FIFO Configure use of FIFO and set trigger levels
arg
This parameter depends on the selected function (request). How to use this parameter is
described below with the function.
RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

For TPMC861 legacy driver version: The error code is a standard error code set by the 1/O
system (see VxWorks Reference Manual). Function specific error codes will be described with
the function.

For TPMC861 VxBus driver version: The error code is always a standard error code set by the
I/O system. There are no driver specific error codes.

SEE ALSO

ioLib, basic I/O routine - ioctl()

TPMC861-SW-42 — VxWorks Device Driver Page 24 of 39

4.5.1 FIOBAUDRATE

This 1/0 control function configures the baudrate for the specified device. It is basically a standard
function with a few points to pay attention to. The function specific control parameter arg passes the
selected baudrate to the device driver.

The selected baud rate is always set to the nearest selectable value.
How to calculate baudrates, please refer to the TPMC861 User Manual.

Examples:

Required Baud Rate Selected Baud Rate

9600 9600
100000 115200
115200 115200

Higher baud rates shall be used with enabled FIFO, this will avoid losing data.

EXAMPLE

#include “tpmc861.h"

int fd;
int result;
/e

result = ioctl(fd, FIOBAUDRATE, 9600);
if (result == 0K)

{
/* Success */
}
else
{
/* Function failed */
}

ERROR CODES

Error Code Description
EINVAL Baudrate out of range

TPMC861-SW-42 — VxWorks Device Driver Page 25 of 39

4.5.2 FIO_EXAR16XXX_DATABITS

This 1/0 control function selects the number of data bits in one word for the specific device.

The function specific control parameter arg passes the selected value to the device driver. The
following values are possible:

Value Description

EXAR16XXX_DB_5 use 5 data bits

EXAR16XXX DB 6 use 6 data bits

EXAR16XXX DB 7 use 7 data bits

EXAR16XXX_DB_8 use 8 data bits
EXAMPLE

#include '"tpmc861.h~

int Td;

int result;

/)
Set channel to a word length of 7 bit

result = iToctl(fd, FI0_EXAR16XXX_DATABITS, EXAR16XXX_DB_7);
if (result == 0K)

{
/* Success */
}
else
{
/* Function failed */
}

ERROR CODES

Error Code Description
EINVAL Invalid number of data bits specified

TPMC861-SW-42 — VxWorks Device Driver Page 26 of 39

4.5.3 FIO_EXAR16XXX_STOPBITS

This 1/0O control function selects the number of stop bits used for the specific device.

The function specific control parameter arg passes the selected value to the device driver. The
following values are possible:

Value Description
EXAR16XXX_SB 10 use 1 stop bit
EXAR16XXX_SB_15 use 1.5 stop bits
EXAR16XXX_SB 20 use 2 stop bits

EXAMPLE

#include "tpmc861.h”

int fd;

int result;

)
Set channel to a stop bit length of 1 bit

result = ioctl (fd, FI0_EXAR16XXX_STOPBITS, EXAR16XXX_SB_10);
if (result == 0K)

{
/* Success */
}
else
{
/* Function failed */
}

ERROR CODES

Error Code Description
EINVAL Invalid number of stop bits specified

TPMC861-SW-42 — VxWorks Device Driver Page 27 of 39

4.5.4 FIO_EXAR16XXX_PARITY

This 1/0O control function selects parity checking mode for the specific device.

The function specific control parameter arg passes the selected value to the device driver. The

following values are possible:

Value Description

EXAR16XXX_NOP do not use parity

EXAR16XXX_EVP use EVEN parity

EXAR16XXX_ODP use ODD parity

EXAR16XXX_SPP use SPACE parity

EXAR16XXX_MAP use MARK parity
EXAMPLE

#include '"tpmc861.h~

int fd;
int result;
J e __

result = ioctl(fd, FIO_EXAR16XXX_PARITY, EXARLG6XXX_NOP);

if (result == 0K)

{
/* Success */
}
else
{
/* Function failed */
}

ERROR CODES

Error Code
EINVAL

TPMC861-SW-42 — VxWorks Device Driver

Description
Invalid parity mode specified

Page 28 of 39

4.5.5 FIO_EXAR16XXX_SETBREAK

This 1/0 control function sets break state on transmit line. The function specific control parameter arg
is unused and will be ignored.

EXAMPLE

#include “tpmc861.h"

int fd;

int retval;

e
Set break on Tx line(s)

retval = i1octl(fd, FI0_EXAR16XXX_SETBREAK, 0);
if (retval !'= ERROR)

{
/* function succeeded */
}
else
{
/* handle the error */
}

TPMC861-SW-42 — VxWorks Device Driver Page 29 of 39

4.5.6 FIO_EXAR16XXX_CLEARBREAK

This I/O control function resets break state on transmit line. The function specific control parameter arg

is unused and will be ignored.

EXAMPLE

#include “tpmc861.h"

int fd;

int retval;

e
Clear break on Tx line(s)

retval = ioctl(fd, FIO_EXAR16XXX_CLEARBREAK, 0);

if (retval '= ERROR)

{
/* function succeeded */
}
else
{
/* handle the error */
}

TPMC861-SW-42 — VxWorks Device Driver

Page 30 of 39

4.5.7 FIO_EXAR16XXX_CHECKBREAK

This I/O control function returns if a break event on the receive line has been detected since the last
call of the function. The function specific control parameter arg passes a pointer (int*) where the return
value will be stored. A return value TRUE indicates that a break event has been detected, the value
FALSE indicates that no break event has been detected.

EXAMPLE

#include “tpmc861.h"

int fd;

int retval ;

int breakDetect;
/e

retval = ioctl(fd, FIO_EXAR16XXX_CHECKBREAK,
(EXAR16XXX_10CTL_ARG_T)&breakDetect);

if (retval = ERROR)

{
/* function succeeded */
if (breakDetect)
{
/* A break has been detected */
}
}
else
{
/* handle the error */
}

TPMC861-SW-42 — VxWorks Device Driver Page 31 of 39

4.5.8 FIO_EXAR16XXX_CHECKERRORS

This 1/0O control function returns the error state of the device. The function specific control parameter
arg points to a buffer (unsigned int) the status will be returned. The returned status is an OR’ed value
of the following flags:

Value Description

EXAR16XXX_FRAMING_ERR This bit is set if a framing error has been detected
since the last call.

EXAR16XXX_PARITY_ERR This bit is set if a parity error has been detected since
the last call.

EXAR16XXX_OVERRUN_ERR This bit is set if an overrun error has been detected

since the last call.

EXAMPLE

#include “tpmc861.h"

int fd;
int retval ;
unsigned long errStat;
Y
Get receive status
__________________ */

retval = ioctl(fd, FI0_EXAR16XXX_CHECKERRORS,
((EXAR16XXX_I0CTL_ARG_T))&errStat);

if (retval !'= ERROR)

{
/* function succeeded */
ifT (errStat & EXAR16XXX_FRAMING_ERR)
{
/* Framing error occurred */
3
3
else
{
/* handle the error */
3

TPMC861-SW-42 — VxWorks Device Driver Page 32 of 39

4.5.9 FIO_EXAR16XXX_RECONFIGURE

This 1/0O control function resets the device to the default configuration. The function specific control

parameter arg is not used for this function

EXAMPLE

#include “tpmc861.h"

int fd;

int retval;

S e __
Reconfigure serial channel

retval = ioctl(fd, FIO_EXARL16XXX_RECONFIGURE, 0);

if (retval '= ERROR)

{
/* function succeeded */
}
else
{
/* handle the error */
}

TPMC861-SW-42 — VxWorks Device Driver

Page 33 of 39

4.5.10 FIO_EXAR16XXX_FIFO

This I/O control function specifies if FIFOs shall be enabled and which trigger levels should be used
for interrupt generation. The function specific control parameter arg passes a pointer to the FIFO
setting structure (EXAR16XXX_FIFO_STRUCT).

typedef struct
{
int rxFifoTrigger;
int txFifoTrigger;
} EXAR16XXX_FIFO_STRUCT;
rxFifoTrigger
Specifies the receive FIFO trigger level. Allowed values are:
1...127 FIFOs enabled, value specifies receive FIFO
trigger level
EXAR16XXX_F_NO FIFOs disabled, only valid if transmit FIFO will
also be disabled.
txFifoTrigger
Specifies the transmit FIFO trigger level. Allowed values are:
1...127 FIFOs enabled, value specifies transmit FIFO
trigger level
EXAR16XXX_F NO FIFOs disabled, only valid if receive FIFO will also
be disabled.

Changing the FIFO-fifo-trigger levels may influence the behavior of your target system,
therefore please refer to chapter 5.1 Configuration of FIFO-Trigger-Levels.

TPMC861-SW-42 — VxWorks Device Driver Page 34 of 39

EXAMPLE

#include “tpmc861.h"

int fd;
int result;
EXAR16XXX _FIFO_STRUCT fifoSet;

Enable FIFO with
- receive trigger at 85
- transmit trigger at 15

1l
0
a1

fifoSet._rxFifoTrigger
fifoSet._txFifoTrigger 15

result = Toctl(fd, FI0O_EXAR16XXX_FIFO, (EXAR16XXX_IOCTL_ARG_T)&FifoSet);
if (result == 0K)

{
/* Success */
}
else
{
/* Function failed */
}

ERROR CODES

Error Code Description

EINVAL Invalid Trigger Level specified or the combination of trigger
levels is not allowed.

TPMC861-SW-42 — VxWorks Device Driver Page 35 of 39

4.5.11 FIO_EXAR16XXX_CHANNEL_INFO

This 1/0 control function returns information regarding the specified channel. The returned information
contains information about the board where the channel is located. The function will also return
information about the PCI-bus location where the controller of the channel can be found. This
information may be helpful to find a special channel in the system and to assign a physical channel to
a logical device.

The function specific control parameter arg passes a pointer to an information structure
(EXAR16XXX_CHANNEL_INFO_STRUCT) where the information will be filled in.

typedef struct

{
struct exarl6xx_board_info_struct board;
struct exarl6xx_controller_info_struct controller;

} EXAR16XXX_CHANNEL_INFO_STRUCT;

board

This structure (struct exarl6xx_board_info_struct) contains board information that belongs to a
specified channel.

struct exarl6xx_board_info_struct

{
int channelNo;
unsigned int boardld;
unsigned int boardVariant;
int boardindex;

2

channelNo

This value returns the channel number of the board where the channel is located. The returned
number will match the channel number assigned in the User Manual.

boardld
This value returns a unique ID, which identifies the used board type. This information may be of
interest if other serial boards are used. The driver will always return TPMC861_MODULE_ID
identifying the TPMC861.

boardVariant
This value returns the board variant. The returned number specified the xx in the board name
TPMC861-xx.

boardindex

This value returns the index of the specified board. If just one TPMC861 is used, this index will
always be 0, but if more than a single TPMCB861 is installed, the index value returned is the
index for PCl-search (The index is depends on the search order of the BSP).

TPMC861-SW-42 — VxWorks Device Driver Page 36 of 39

controller

This structure (struct exarl6xx_controller_info_struct) contains information that belongs to the
controller and the specified channel which describes the location of the controller and channel on

PCl-bus.
struct exarl6xx_controller_info_struct
{
int pciBusNo;
int pciDeviceNo;
int pciFunctionNo;
int controllerPort;
2
pciBusNo

This PCI bus number the channels controller is located at.

pciDeviceNo
This PCI device number the channels controller is located at.

pciFunctionNo

This PCI function number the channels controller is located at. The TPMC861 is not a
multifunction device, therefore the function number is always 0.

controllerPort

This value specifies the channel index within the controller, as assigned in the documentation of
the controller chip.

EXAMPLE

#include “tpmc861.h"
int fd;

int retval ;
EXAR16XXX CHANNEL INFO_STRUCT channel Info;

TPMC861-SW-42 — VxWorks Device Driver Page 37 of 39

Get Channel Board Information

result = 1octl(fd, FI0_EXAR16XXX_CHANNEL_INFO,
(EXAR16XXX_I0CTL_ARG_T)&channel Info);

if (result == 0K)
{
printf("'Get Channel Board Information successfully executed\n');

printf("'Board: TPMC%d-%02d - Board Index: %d\n",
channel Info.board.boardld,
channelInfo.board.boardVariant,
channel Info.board.channelNo);

printf(" Channel number on board: %d\n",
channel Info.board.channelNo);

printf("'Controller: PCl-Location: [%d/%d/%d]\n",
channel Info.controller_pciBusNo,
channelInfo.controller._pciDeviceNo,
channel Info.controller._pciFunctionNo);

printf(" Local channel number on controller: %d\n"
channel Info.controller.controllerPort);

else

/* handle the error */

TPMC861-SW-42 — VxWorks Device Driver Page 38 of 39

5Appendix

5.1 Configuration of FIFO-Trigger-Levels

The FIFO trigger-levels may influence the behavior of the target system. A modification of the FIFO-

trigger-levels also means changing the duration of a single interrupt and the number of interrupts that
will be generated.

Increasing the receive FIFO-trigger-level will lower the number of generated interrupts, but it will also

increase the execution time of a single interrupt function and it may increase the risk of losing data by
FIFO overrun.

Increasing the transmit FIFO-trigger-level will increase the number of generated interrupts, but it will

also lower the execution time of a single interrupt function and decrease the chance of gaps in the
transmission stream.

TPMC861-SW-42 — VxWorks Device Driver Page 39 of 39

	1 Introduction
	1.1 Device Driver

	2 VxBus Driver Support
	2.1 Device Driver Configuration Parameters
	2.1.1 Assignment of Port Names
	2.1.2 SW-FIFO Configuration

	2.2 Default Port Configuration
	2.3 Enable RTP-Support
	2.4 Compatibility to pre-VxBus Applications

	3 Legacy I/O System Functions
	3.1 tpmc861Drv
	3.2 tpmc861DevCreate
	3.3 tpmc861PciInit
	3.4 tpmc861Init

	4 Basic I/O Functions
	4.1 open
	4.2 close
	4.3 read
	4.4 write
	4.5 ioctl
	4.5.1 FIOBAUDRATE
	4.5.2 FIO_EXAR16XXX_DATABITS
	4.5.3 FIO_EXAR16XXX_STOPBITS
	4.5.4 FIO_EXAR16XXX_PARITY
	4.5.5 FIO_EXAR16XXX_SETBREAK
	4.5.6 FIO_EXAR16XXX_CLEARBREAK
	4.5.7 FIO_EXAR16XXX_CHECKBREAK
	4.5.8 FIO_EXAR16XXX_CHECKERRORS
	4.5.9 FIO_EXAR16XXX_RECONFIGURE
	4.5.10 FIO_EXAR16XXX_FIFO
	4.5.11 FIO_EXAR16XXX_CHANNEL_INFO

	5 Appendix
	5.1 Configuration of FIFO-Trigger-Levels

