

TPMC872

One / two Socket PC Card Interface

Version 1.0

User Manual

Issue 1.0.2 August 2014

TEWS TECHNOLOGIES GmbH

Am Bahnhof 7
25469 Halstenbek, Germany www.tews.com
Phone: +49-(0)4101-4058-0
Fax: +49-(0)4101-4058-19
e-mail: info@tews.com

TPMC872-10

One Socket PC Card Interface, inserted PC Card accessible through PMC front panel

TPMC872-11

One Socket PC Card Interface, inserted PC Card aligned with PMC board border, no front panel

TPMC872-12

One Socket PC Card Interface, inserted PC Card aligned with PMC board border, with PMC front panel

TPMC872-20

Two Socket PC Card Interface, inserted PC Card in first socket accessible through PMC front panel. The second socket is relegated so that the inserted card is located behind the PMC board border.

TPMC872-21

Two Socket PC Card Interface, inserted card in first socket is aligned with the PMC board border. The second socket is relegated so that the inserted card is located behind the PMC board border, no PMC front panel.

TPMC872-22

Two Socket PC Card Interface, inserted card in first socket is aligned with the PMC board border. The second socket is relegated so that the inserted card is located behind the PMC board border, with PMC front panel.

This document contains information, which is proprietary to TEWS TECHNOLOGIES GmbH. Any reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any effort to ensure that this manual is accurate and complete. However TEWS TECHNOLOGIES GmbH reserves the right to change the product described in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any damage arising out of the application or use of the device described herein.

Style Conventions

Hexadecimal characters are specified with prefix 0x, i.e. 0x029E (that means hexadecimal value 029E).

For signals on hardware products, an ,Active Low' is represented by the signal name with # following, i.e. IP RESET#.

Access terms are described as:

W Write Only
R Read Only
R/W Read/Write
R/C Read/Clear
R/S Read/Set

©2014 by TEWS TECHNOLOGIES GmbH

All trademarks mentioned are property of their respective owners.

Issue	Description	Date
1.0	First Issue	March 2004
1.1	New address TEWS LLC	September 2006
1.0.2	General Revision	August 2014

Table of Contents

PRODUCT DESCRIPTION	6
1.1 Module TPMC872-10 (One Socket)	7
1.2 Module TPMC872-11 (One Socket)	8
3.1.2 I/O Mapping	13
3.2 Address Mapping TPMC872 – CardBus mode	14
3.3 PCI Interrupts	15
PCI1520 PC CARD CONTROLLER	16
•	
	PRODUCT DESCRIPTION 1.1 Module TPMC872-10 (One Socket)

List of Figures

FIGURE 1-1: BLOCK DIAGRAM TPMC872	6
FIGURE 1-2: MODULE TPMC872-10	7
FIGURE 1-3: SIDE VIEW OF MODULE TPMC872-10	7
FIGURE 1-4: MODULE TPMC872-11	8
FIGURE 1-5: SIDE VIEW OF MODULE TPMC872-11	8
FIGURE 1-6: MODULE TPMC872-12	9
FIGURE 1-7: SIDE VIEW OF MODULE TPMC872-12	9
FIGURE 1-8: SIDE VIEW OF MODULE TPMC872-20	10
FIGURE 1-9: SIDE VIEW OF MODULE TPMC872-21	10
FIGURE 1-10: SIDE VIEW OF MODULE TPMC872-22	10
FIGURE 3-1: PCI TO PC CARD MEMORY MAPPING	12
FIGURE 3-2: PCI TO PC CARD I/O MAPPING	
FIGURE 3-3: CARDBUS WINDOW MECHANISM	
FIGURE 4-4: ISA IRQ PAD LOCATION	18
List of Tables	
TABLE 2-1: TECHNICAL SPECIFICATION	11
TABLE 3-1: SOCKET REGISTERS IMPLEMENTED IN PCI1520 (FUNCTION 0 AND 1)	14
TABLE 4-1: PCI CONFIGURATION REGISTER	16
TABLE 4-2: CONFIGURATION EEPROM	17
TADLE 4.2. ISA INTERDITOR	10

1 Product Description

The TPMC872 is a standard single-width 32 bit PMC module providing one or two sockets for 16 bit PC Card or 32 bit CardBus Cards using a dual socket PC Card / CardBus controller and a power management unit. The first CardBus / PC Card socket is mounted on the component side of the PMC. This socket supports card types I and II. The second PC Card / CardBus socket is mounted on the solder side of the PMC (TPMC872-2x only), supporting card types I, II and III.

The register map of the PC Card controller is Intel 82365-DF compatible.

The power management unit provides 3.3V or 5.0V PC Card / CardBus power supply and 3.3V, 5.0V or 12V PC Card / CardBus programming voltage. Due to the short circuit and thermal protection of the power management unit no external fuses are needed on the module.

The TPMC872 provides full ExCA register implementation for 16 bit PC Cards compatible with PCMCIA 2.1/JEIDA 4.2 standards. Both memory and I/O cards are supported. Up to five memory windows and up to two I/O windows are available for PC Card16 accesses. For 32 bit CardBus cards two memory windows and two I/O windows are supported by the controller. CardBus card status information can be accessed in five card bus socket registers which can be mapped in the host memory space.

The PC Card assembly has a maximum component height of 5.6mm which is 0.9mm above the specified component height (4.7mm) according to IEEE1386.1. The TPMC872 Version 1.0 will power up in the 16 bit PC Card mode.

The second PC Card socket is assembled on the solder side of the PMC, requiring additional space.

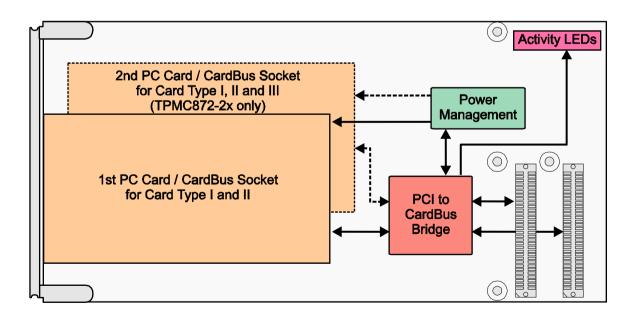


Figure 1-1: Block Diagram TPMC872

1.1 Module TPMC872-10 (One Socket)

The inserted card is accessible through the PMC front panel.

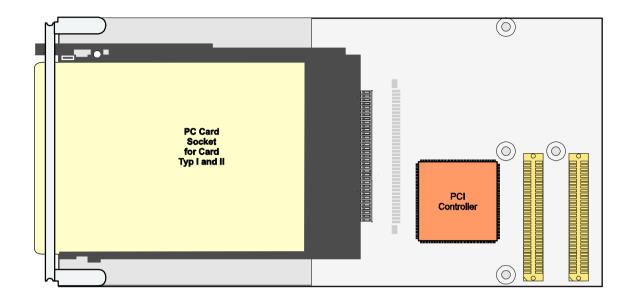


Figure 1-2: Module TPMC872-10

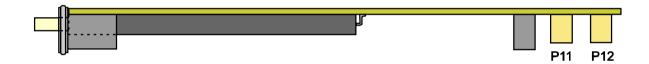


Figure 1-3: Side view of Module TPMC872-10

1.2 Module TPMC872-11 (One Socket)

The socket is relegated so that the inserted card is aligned with the PMC board border. It has no PMC front panel.

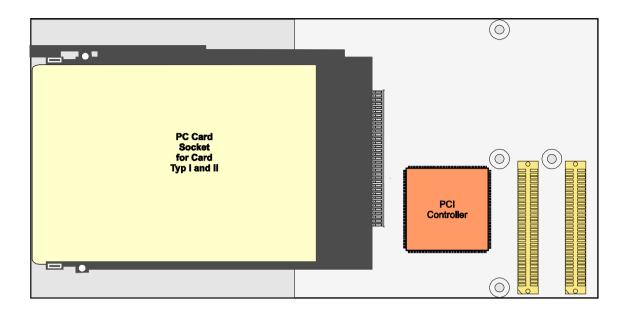


Figure 1-4: Module TPMC872-11

Figure 1-5: Side view of Module TPMC872-11

1.3 Module TPMC872-12 (One Socket)

The socket is relegated so that the inserted card is aligned with the PMC board border. It has a PMC front panel.

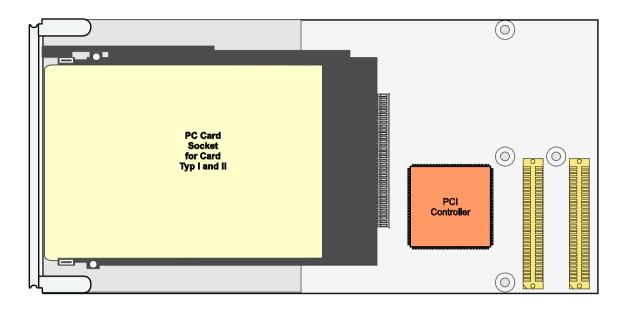


Figure 1-6: Module TPMC872-12

Figure 1-7: Side view of Module TPMC872-12

1.4 Module TPMC872-20 (Two Sockets)

The inserted card in the first socket is accessible through the front panel. The second socket on the solder side of the PMC is relegated so that the inserted card is located behind the PMC board border.

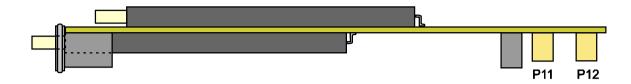


Figure 1-8: Side view of Module TPMC872-20

1.5 Module TPMC872-21 (Two Sockets)

The module has no PMC front panel. The first socket is relegated so that the inserted card is aligned with the PMC board border. The second socket on the solder side of the PMC is relegated so that the inserted card is located behind the PMC board border.

Figure 1-9: Side view of Module TPMC872-21

1.6 Module TPMC872-22 (Two Sockets)

The first socket is relegated so that the inserted card is aligned with the PMC board border. The second socket on the solder side of the PMC is relegated so that the inserted card is located behind the PMC board border. It has a PMC front panel.



Figure 1-10: Side view of Module TPMC872-22

2 Technical Specification

Mechanical Interface	DCI Mazzanina	Cond (DMC) Interfere					
Mechanical Interface	PCI Mezzanine Card (PMC) Interface Single Size						
Flootical Intentors		Eat					
Electrical Interface	PCI Rev. 2.2 compliant 33 MHz / 32 bit PCI						
		PCI CI Signaling Voltage					
On Board Books	3.3V and 5V PC	51 Signaling Voltage					
On Board Devices	I -	+ B014500					
PCI Controller	Texas Instrume						
CMC Module		onforming to IEEE P1386.1					
	height of 5.6m component he	ssembly has a maximum component m which is 0.9mm above the specified ight (4.7mm) according to IEEE1386.1.					
		C Card socket is assembled on the solder C, requiring additional space.					
Module Specific Data							
PC Card Interface	16 bit PC Card	electrical interface					
	32 bit CardBus electrical interface						
PC Card Sockets	1 socket for card types I and II						
	1 socket for card types I, II and III (TPMC872-2x only)						
PC Card Operating Voltage	+3.3V or +5V						
PC Card Programming Voltage	+3.3V/+5V or +12V						
PC Card Supply Current	1A maximum po	er socket					
PC Card Programming Current	100mA maximum per socket						
Physical Data							
Power Requirements	70mA typical @ +3.3V DC						
	7mA typical @						
	<2mA typical @	2 V(I/O)					
Power Requirements with PC Card	Voltage and cui	rrent depends on the used PC Card					
Temperature Range	Operating	-40°C to +85°C					
	Storage	-40°C to +85°C					
MTBF	638000 h						
		n are based on calculation according to MIL-HDBK-217F 7F Notice 2; Environment: G _B 20°C.					
	The MTBF calculation is based on component FIT rates provided by the component suppliers. If FIT rates are not available, MIL-HDBK-217F and						
Humidity	MIL-HDBK-217F Notice 2 formulas are used for FIT rate calculation. 5 – 95 % non-condensing						
Humidity							
Weight	72 g, no PC Card inserted						

Table 2-1: Technical Specification

3 Functional Description

The TPMC872 uses a PCI1520 PC Card controller from Texas Instruments to support 16 bit PC Card 16 and 32 bit CardBus Cards. The PCI1520 is a PCI-to-CardBus controller that supports two independent card sockets compliant with the PC Card Standard 7.1. For 16 bit PC Card control the PCI1520 is fully register compatible with the Intel 82365L-DF PC Card interface controller through the ExCA register set. The ExCA registers can be accessed indirectly via PCI I/O access space or directly via PCI memory address space.

3.1 Address Mapping TPMC872 – PC Card 16 mode

The PCI1520 provides a window mechanism to link the PCI space to PC Card16 address space. Memory and I/O windows are programmable by the host software in the ExCA registers of the PCI1520.

In PC Card16 mode the TPMC872 Version 1.0 is compatible to the TPMC871 Version 1.0, 2.0 and Version 3.0.

3.1.1 Memory Mapping

Memory Window Page any 16 Mbyte boundary Window STOP Window START OFFSET Start Address any 4Kbyte boundary

Figure 3-1: PCI to PC Card memory mapping

To open a memory window, software must provide the PCI1520 with memory start address, memory stop address, PC Card memory offset and memory window page address.

PC Card memory is accessed only if the address window is enabled and if the memory address is located between start and stop address.

The Memory Window Page Register is only accessible via the PCI memory address space.

3.1.2 I/O Mapping

The 16 bit I/O card address space is accessed via 16 bit I/O addresses. The PC Card 16 I/O space is mapped to the lower 64kByte PCI I/O address space.

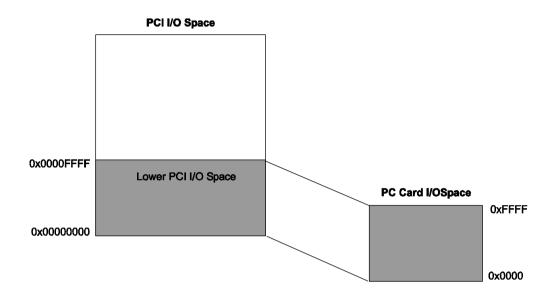


Figure 3-2: PCI to PC Card I/O mapping

To open I/O window, software must provide the PCI1520 with I/O start address, I/O stop address, and I/O offset.

PC Card16 I/O is accessed only if the address window is enabled and if the I/O address is located between start and stop address.

For detailed information about window mapping procedure and status / control registers please refer to the PCI1520 data sheet.

3.2 Address Mapping TPMC872 - CardBus mode

The PCI1520 provides a window mechanism to link the PCI space to 32 bit CardBus cards address spaces. Memory and I/O windows are programmable by the host software in the memory or I/O Base Registers in the PCI1520 configuration space. The PCI1520 offers two memory and two I/O windows per socket. The size of each window will be determined by host software via memory and I/O limit registers. The Base Address Registers will be initialized with the start addresses and the limit registers will be initialized with the upper address of the memory or I/O windows.

The CardBus card address space can be accessed via the CardBus base address registers, which are located in the PCI configuration space of the PCI1520.

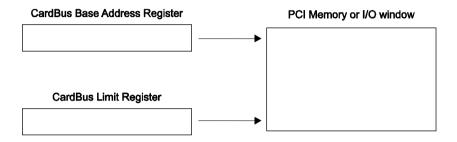


Figure 3-3: CardBus window mechanism

The PCI1520 provides CardBus card status information via the CardBus Socket Register at configuration space offset 0x10. This address, which must be initialized by the device driver software, points to five 32 bit registers, which can be located anywhere in the PCI memory space at a 1Kbytes boundary at offset 0x00. Each Socket has a separate base address register to access the CardBus socket registers. The following socket registers are implemented in the PCI1520:

Register Name	Offset
Socket Event	0x00
Socket Mask	0x04
Socket Present State	80x0
Socket Force Event	0x0C
Socket Control	0x10
Reserved	0x14
Reserved	0x18
Reserved	0x1C
Socket Power Management	0x20

Table 3-1: Socket Registers implemented in PCI1520 (Function 0 and 1)

These registers may notify the device driver software that a card has been inserted, removed, and what supply voltage is needed to power the CardBus card properly etc.

Further information regarding the status of the CardBus interface can be obtained from the secondary status register at offset 0x16 in the PCI configuration space of the PCI1520. This register is very similar to the PCI Bus Status Register and provides information about parity errors, aborted transactions, CardBus system errors etc.

3.3 PCI Interrupts

The multifunction pin 0 of the PC Card socket controller is used as the PCI interrupt INTA#. The PCI1520 provides a card status change interrupt which can notify the system of change in the PC Card battery voltage levels, PC Card insertion / removal detection, Ready/Busy# condition and functional status change for both sockets. These various interrupt sources of both PC Cards are individually programmable to INTA# via ExCA "Card Status Change Interrupt Configuration Register" at ExCA register offset 0x05.

4 PCI1520 PC Card Controller

4.1 PCI Configuration Registers (Functions 0 and 1)

4.1.1 PCI Header of the TPMC872 Version 1.0

PCI CFG Register					PCI write	Read after Reset
Address		able	(Hex-Value)			
Addiess	31 24	23 16	15 8	7 0	abic	(rick value)
0x00	Devi	ce-ID	Vend	dor-ID	N	AC55104C
0x04	Sta	atus	Com	mand	Υ	02100000
0x08		Class Code		Revision ID	N	06070001
0x0C	BIST	Header Type	PCI Latency	Cache line Size	Y[7:0]	00820000
		,	Timer			
0x10		CardBus Socket/E	xCA Base Addres		Υ	00000000
0x14	Seconda	ary Status	Reserved	Capability Pointer	N	020000A0
0x18	CardBus	Subordinate	CardBus Bus	PCI Bus	Υ	00000000
	Latency Timer	Bus Number	Number	Number		
0x1C			y Base Register 0		Υ	00000000
0x20		CardBus Memor	y Limit Register 0		Υ	00000000
0x24		CardBus Memor	y Base Register 1		Υ	00000000
0x28		CardBus Memor	y Limit Register 1		Υ	00000000
0x2C		Υ	00000000			
0x30		Υ	00000000			
0x34		Υ	00000000			
0x38			Υ	00000000		
0x3C	Bridge Con	trol Register	Interrupt Pin	Interrupt Line	Υ	034001FF
0x40	Subsy	stem ID	Subsysten	Vendor ID	Υ	03681498
0x44	PC	Υ	00000001			
0x48-0x7C		N	00000000			
0x80			Υ	2844D061		
0x84		Res	erved		N	00000000
0x8C		Multifunct	ion Routing		Υ	00C01D02
0x90	Diagnostic	Device Control	Card Control	Retry Status	Υ	616400C0
0x94		Res	erved		Υ	00000000
0x98		Υ	00000000			
0x9C		N	00000000			
0xA0	Power Manager	N	7E120001			
0xA4	PM data	PMCSR bridge support		anagement /control	Y	00C00000
0xA8	General Purpo	se Event Enable	General Purpo	se Event Status	Υ	00000000
0xAC		rpose Output		rpose Input	Υ	00000000
0xB0	Serial Bus Control /Status	Serial Bus Slave Address	Serial Bus Index	Serial Bus Data	Y	00000000
0xB4-0xFC		•	N	00000000		

Table 4-1: PCI Configuration Register

4.2 Configuration EEPROM

The TPMC872 is equipped with an on board I²C EEPROM. After power-on or PCI reset, the following PCI Configuration Register of the PCI1520 PC Card controller will be initialized with hardware depended configuration data:

Register Name	Register Offset	EEPROM Offset	Value
Load EEPROM Data Flag	-	0x00	0x01
Command Register	PCI 0x04	0x01	0x00
Subsystem Vendor ID Register	PCI 0x40	0x02	0x1498
Subsystem ID Register	PCI 0x42	0x04	0x0368
PC Card 16-I/F LBAR	PCI 0x44	0x06	0x0000001
System Control Register	PCI 0x80	0x0A	0x28D061
Multifunction Routing Register	PCI 0x8C	0x0D	0x00C01D02
Retry Status Register	PCI 0x90	0x11	0xC0
Card Control Register	PCI 0x91	0x12	0x00
Device Control Register	PCI 0x92	0x13	0x64
Diagnostic Register	PCI 0x93	0x14	0x61
Power Management Capability	PCI 0xA2	0x15	0x7E
ExCA Identification and Revision	ExCA 0x00	0x16	0x84
Socket force Event (Function 0)	CB Socket + 0x0C (function 0)	0x17	0x00
Socket force Event (Function 1)	CB Socket + 0x0C (function 1)	0x18	0x00

Address		Offset														
	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9	0xA	0xB	0xC	0xD	0xE	0xF
0x00	0x01	0x00	0x98	0x14	0x68	0x03	0x01	0x00	0x00	0x00	0x61	0xD0	0x28	0x02	0x1D	0xC0
0x10	0x00	0xC0	0x00	0x64	0x61	0x7E	0x84	0x00	0x00	0xFF						

Table 4-2: Configuration EEPROM

4.3 ISA Interrupts

The TPMC872 provides a possibility to gain access to parallel or serialized ISA IRQ signals on board.

With the default EEPROM download configuration the PCI1520 is initialized to generate serial ISA IRQs on MFUNC3. For other IRQ configurations, the PCI1520 PC Card controller must be initialized through the controller's device driver. Interrupt signaling can be provided through the PCI1520 multifunction pins MFUNC3 and MFUNC6. MFUNC3 can be configured to function as serial or parallel ISA IRQ 2 to 15. MFUNC6 can be configured to function as parallel ISA IRQ 2 to 15. To enable the parallel ISA IRQs on these pins the following settings must be done by software:

Register	Offset	Required Value	ISA Routing
Multifunction routing	0x8C	Bits 27-24: 0x2 - 0xF	MFUNC6 is IRQ 2 -15
Multifunction routing	0x8C	Bits 15-12: 0x2 - 0xF	MFUNC3 is IRQ 2 -15
Device control	0x92	Bits 2–1: 0x01	Parallel ISA and PCI interrupts enabled
ExCA interrupt control	0x03	Bits 3-0: 0x3-0xF	IRQ 3-15 enabled

Table 4-3: ISA Interrupts

The ISA IRQ signal of MFUNC3 can be accessed in several ways. One option is to route the signal via a 00hm resistor to the PMC connector P11 Pin10. Alternatively, the signal can be accessed on the flipside of the TPMC872. The following figure shows where the ISA IRQ signal of MFUNC3 can be accessed on the flipside of the TPMC872:

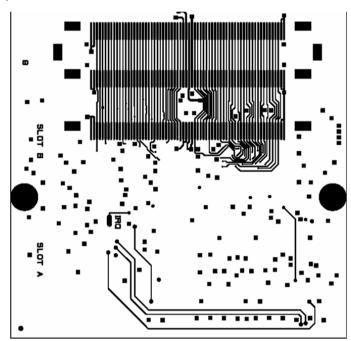


Figure 4-1: ISA IRQ pad location

4.4 Initialization for CardBus mode

The TPMC872 is initialized for PC Card16 mode per default. If 32 bit CardBus operation is wanted, a software device driver should perform the following initialization steps:

- The CardBus Latency Timer Register at offset 0x1B in the PCI Configuration space should be set to a value of 0x20.
- A Memory and/or the I/O Base Address Register must be written with a valid 32 bit window start address.
- A Memory and/or I/O Limit Register must be written with a valid 32 bit upper window address.